Исполинский, светящийся изнутри пароводяной купол взлетел в небо над бухтой губы Черная, на несколько секунд застыл и с грохотом осел в море, утянув за собой в пучину небольшой военный флот. В минувший вторник исполнилось ровно 60 лет со дня испытаний первой советской ядерной торпеды Т-5. Выпущенный с подводной лодки С-144 боеприпас прошел десять километров и сдетонировал на 35-метровой глубине, уничтожив два эсминца, две субмарины и два тральщика. Мощность взрыва достигла десяти килотонн.
Созданием ядерной торпеды в СССР озадачились почти сразу после испытаний первой атомной бомбы в 1949-м. Как основные средства доставки мощного ядерного боезаряда на территорию США в те годы рассматривались дальние бомбардировщики и ракеты, но первые были уязвимы для ПВО, а вторые находились на зачаточном уровне развития и надежностью не отличались.
Подлодки — другое дело. Они отлично проявили себя во Второй мировой войне, могли скрытно подобраться к вражеским берегам и нанести мощный опустошительный удар по инфраструктуре и портам. Многие советские подводники на тот момент имели отличный опыт войны на море и идеально подходили для решения таких стратегических задач.
Пожалуй, самым амбициозным проектом в истории отечественного ВМФ стала гигантская торпеда Т-15 с атомным боевым отделением, которой занялись в начале 1950-х. Суперторпедой калибра 1550 мм, массой 40 тонн и длиной более 20 метров планировалось вооружить атомные субмарины проекта 627, спроектированные специально для нее. Удары предполагалось наносить по стратегическим береговым объектам США, таким как морские порты, базы и крупные прибрежные города.
Работы по торпеде велись параллельно с испытаниями первой в мире водородной бомбы РДС-6, которую взорвали в августе 1952-го. Через два года утвердили технический проект атомной торпеды и ее носителя, впервые допустив к секретной информации моряков. Флот на всю эту историю отреагировал безрадостно — гигантский торпедный аппарат занимал пятую часть всей лодки и фактически превращал ее в “оружие одного выстрела”. Кроме того, появились обоснованные вопросы к дальнобойности и скорости торпеды, которые оставляли желать лучшего.
По этим и другим причинам в “железе” подводное оружие возмездия так и не сделали, переключившись на более скромную парогазовую 533-миллиметровую торпеду Т-5 с тактическим ядерным боезарядом РДС-9. Такой калибр для ВМФ был более привычен и позволял заряжать Т-5 в штатные аппараты субмарин.
В сентябре 1955-го на Новой Земле провели испытания боевого зарядного отделения Т-5 (см. материал 122.1). СССР впервые осуществил подводный ядерный взрыв. Заряд для торпеды опустили в воду с тральщика и подорвали на глубине 12 метров, при этом мощность составила около трех килотонн в тротиловом эквиваленте.
Спустя два года, 10 октября 1957-го, снаряженной торпедой из кормового аппарата выстрелила подводная лодка проекта 613 С-144 под командованием капитана 1-го ранга Лазарева. Взрывом потопило четыре надводных корабля-мишени и две списанные подлодки. Испытания нового оружия признали успешными, и в 1958-м его передали в ВМФ.
Т-5 стояла на вооружении до появления автономных специальных боевых зарядных отделений (АСБЗО), позволяющих при необходимости “упаковать” 20-килотонную термоядерную начинку в обычные серийные изделия. Первые стандартные 533-миллиметровые торпеды с АСБЗО начали поступать на флот уже в 1960 году.
Примечательно, что спустя несколько лет, после испытаний на Новой Земле знаменитой “Царь-бомбы” мощностью более 50 мегатонн в октябре 1961-го, идею создания сверхмощной термоядерной торпеды высказал академик Андрей Сахаров:
“После испытания “большого” изделия меня беспокоило, что для него не существует хорошего носителя (бомбардировщики не в счет, их легко сбить), то есть в военном смысле мы работали впустую. Я решил, что таким носителем может явиться большая торпеда, запускаемая с подводной лодки. Я фантазировал, что можно разработать для такой торпеды прямоточный водопаровой атомный реактивный двигатель. Целью атаки с расстояния несколько сот километров должны стать порты противника”.
Академик предлагал создать сверхторпеду мощностью 100 мегатонн в прочном корпусе, способную прорываться сквозь минные поля и сети прибрежных заграждений.

Тема сверхмощных ядерных торпед всколыхнула мировую общественность в конце 2015 года, когда на совещании в сочинской резиденции президента России Владимира Путина в объективы телекамер попал слайд с информацией о новом секретном оружии — комплексе “Статус-6” (см. серию материалов 79). Скриншот с описанием этой системы был мгновенно растиражирован в десятках российских и зарубежных СМИ.
На слайде угадывались силуэты атомных подлодок специального назначения “Белгород” и “Хабаровск”, оборудованных стыковочными узлами на днище и способных нести глубоководные аппараты. В центре схемы была размещена огромная торпеда с невероятными характеристиками: дальность 10 тысяч километров, глубина погружения 1000 метров, максимальная скорость — до 100 узлов.
Из описания проекта следовало, что система предназначена для нанесения гарантированно неприемлемого ущерба противнику путем создания зон обширного радиоактивного загрязнения на побережье, непригодных для жизнедеятельности человека в течение длительного времени. СМИ выдвигали предположения, что таких тотальных последствий можно добиться только одним способом — “грязным” взрывом так называемой кобальтовой бомбы.
В конце 2016 года издание Popular Mechanics со ссылкой на источники в Пентагоне сообщило о подтвердившемся факте испытаний “Статуса-6” и назвало это “очень плохой новостью”. По данным американской разведки, суперторпеда была запущена с подлодки специального назначения Б-90 “Саров”.
По мнению американцев, в случае глобального конфликта носитель способен доставить к побережью США термоядерный боезаряд мощностью до 100 мегатонн и вызывать цунами, которое смоет в океан всю прибрежную инфраструктуру вместе с авианосцами, оборонными заводами и целыми городами. О самом испытании и о том, на какой стадии программа “Статус-6” может находиться сегодня, информация в открытых источниках на данный момент отсутствует.

По материалам: РИА Новости https://ria.ru/defense_safety/20171010/1506574658.html

К 85-летию со дня рождения Г.Н.Чернышёва

Л. А. Самаркин, ФГУП «СПМБМ «Малахит»

Выдающееся место в истории отечественного атомного подводного флота принадлежит Генеральному конструктору Георгию Николаевичу Чернышёву. По его проектам 671, 671 РТ, 671 РТМ и 971, хорошо известным морякам-подводникам, в 1967-2001 гг. было построено и сдано Во­енно-Морскому флоту более 60-ти многоцелевых атомных подводных ло­док.
Георгий Николаевич родился 23 августа 1919 г. в г. Николаеве. По­сле окончания в 1943 г. Николаевского кораблестроительного института был направлен на работу в ЦКБ-18 (ныне ЦКБ МТ «Рубин»). С этого вре­мени все отпущенные ему 54 года работы были отданы созданию подвод­ного флота страны. 1943-1948 гг. Г.Н.Чернышёв работал в ЦКБ-18 над послевоенными проектами дизель-электрических подводных лодок. В группе специалистов был командирован в Германию для сбора и изучения материалов по немецким газотурбинным подводным лодкам, а затем (1948-1953 гг.) тру­дился над аналогичной отечественной ПЛ (проект 617) во вновь созданном Специаль­ном конструкторском бюро № 143. Внёс ряд усовершенство­ваний в конструкции и системы корабля, прошёл путь от инженера-конст­руктора до заместителя начальника отдела.
В сентябре 1952 г. Г.Н.Чернышёв в составе небольшой группы спе­циалистов СКБ-143 под руководством В.Н.Перегудова и под научным ру­ководством академика А.П.Александрова работал на территории Института атомной энергии (ИАЭ) имени И.В.Курчатова (Москва) над решением проблемы создания атомной подводной лодки на базе ядерной паропроизводящей установки главного конструктора Н.А.Доллежаля.
В 1953-1956 гг. в реорганизованном СКБ-143 в должности заместителя начальника отдела главной механической установки он принимает ак­тивное участие в создании паротурбинной установки большой мощности для первой отечественной АПЛ проекта 627. За эту работу Г.Н.Чернышёв награжден орденом Трудового Красного Знамени.

Творческие способности, широкий кругозор и стремление к поиску нетрадиционных решений открыли Г.Н.Чернышёву дорогу к новому про­ектированию. С ноября 1956 г. в должности заместителя главного конст­руктора он участвует в разработке АПЛ проекта 639 с баллистическими ракетами большой дальности системы М.К.Янгеля. В 1957 г. был успешно завершён эскизный проект, но из-за прекращения работ по ракетному ком­плексу в 1958 г. были прекращены работы и по проекту подводной лодки. Между тем в проекте 639 были глубоко проработаны принципиально важ­ные для подводного кораблестроения вопросы: переход на переменный ток в силовой сети корабля, повышение параметров в системе ВВД (воздух высокого давления), создание новой высокопрочной стали и переход на большие диаметры прочного корпуса и целый ряд других. Более того, Г.Н.Чернышёвым был проработан и представлен вариант АПЛ с увеличенным числом тяжёлых баллистиче­ских ракет (против 3-х заданных) и показано, что при предлагаемых про­стых проектных решениях число ракет может быть значительно увеличено.
Указанные наработки вместе с другими проектными и инициатив­ными предложениями были использованы в конкурсных предложениях по АПЛ второго поколения. По итогам конкурса СКБ-143 заняло первое ме­сто. В соответствии с принятой специализацией СКБ-143 было поручено проектирование противолодочной подводной лодки проекта 671, и Георгий Николаевич был назначен главным конструктором этого проекта.

В результате напряженной работы головная подводная лодка проекта 671 в 1967 г. вступила в строй. Трудно переоценить значение этого корабля в отечественном подводном кораблестроении. Был создан принципиально новый архитектур­ный тип одновальной АПЛ с осесимметричной формой корпуса, с опти­мальными по пропульсивным качествам удлинением корабля и его обво­дами, с развитым крестообразным кормовым оперением, которое обеспечивало устойчивость движения на рекордной для того времени скорости (ок. 34-х узлов) и, в то же время, с помощью рулей, работающих как закрылки кормовых стабилизаторов, обеспечивало кораблю исключительно высокую маневренность.
Такой форме отвечали и осуществленные в проекте решения: пере­ход на увеличенные диаметры прочного корпуса и ставшие классическими компоновки современной гидроаккустики с торпедным оружием в носовой оконечности и одновальной ГТЗА с автономными турбо-генераторами в одном отсеке. Получению высоких тактико-технических характеристик (ТТХ) способствовала жёсткая борьба за мини­мальное водоизмещение, что обеспечило в дальнейшем создание моди­фикаций проекта и строительство их на внутренних заводах. Задуманная как противолодочная, подводная лодка превратилась в многоцелевую с торпедным вооружением. Затем в процессе строитель­ства появились и ракеты, стартующие из торпедных аппаратов (комплекс «Вьюга»).
За создание АПЛ проекта 671 Г.Н.Чернышёву было присвоено зва­ние Героя Социалистического труда. Прогрессивные проектные решения и полученные высокие ТТХ яви­лись хорошей основой для модификаций проекта с целью дальнейшего по­вышения его военно-экономической эффективности.
Через пять лет в 1972 г. флоту был сдан головной корабль проекта 671 РТ – с увеличенным торпедным вооружением и установкой новых дальноходных торпед 650-мм калибра, с блочной компоновкой ПТУ, со сниженной шумностью. За эту работу Г.Н.Чернышёв был удостоен звания лауреата Государственной премии. В это же время под руководством Г.Н.Чернышёва велись инициатив­ные работы по дальнейшему развитию базового проекта. Был предложен проект 671 РТМ, головной корабль этого проекта был сдан флоту в 1976 г.
На подводной лодке пр. 671 РТМ были установлены головные образ­цы радиоэлектронного вооружения (гидроакустика, навигация, БИУС), создаваемые для проектов третьего поколения, снижена шумность, учтен опыт эксплуатации АПЛ проектов 671 и 671 РТ. Впервые на ней появились неакустические средства обнаружения ПЛ и высокоточное ракетное ору­жие для нанесения ударов по территории вероятного противника. Тактико­-технические характеристики кораблей этого проекта, названного «Щукой», были столь высоки, что они строились огромной серией (26 единиц) на двух заводах: Адмиралтейском в Ленинграде и им. Ленинского комсомола в Косомольске-на-Амуре, а последний корабль был сдан в 1992 г. – че­рез 8 лет после сдачи многоцелевых АПЛ 3-го поколения (проекты 945 и 971). За создание проекта 671 РТМ Г.Н.Чернышёв был награжден орденом Ленина. Подводные лодки проектов 671, 671 РТ и 671 РТМ (всего 48 единиц) стали безотказными «рабочими лошадками», которые всегда возвращались к своим берегам.

В 1974 г. Г.Н.Чернышёв назначается начальником – главным кон­структором Союзного проектно-монтажного бюро машиностроения «Ма­лахит», объединившего коллективы СКБ-143 (СПМБМ) и ЦКБ-16 (ЦПБ «Волна»). Под его руководством ведутся проработки многоцелевой АПЛ 3-его поколения со стальным корпусом. В 1976 г. был представлен со­кращенный эскизный проект этого корабля, которому был присвоен номер 971. Головная АПЛ пр. 971 прошла испытания в 1984 г. В этом же году Г.Н.Чернышёву присваивается звание Генерального конструктора.
Строительство АПЛ проекта 971 разворачивается на заводах в Комсомольске-на-Амуре и в Северодвинске. Освободившись в 1986 г. от должности начальника бюро и главного конструктора проектов 671, 671 РТ и 671 РТМ, все свои усилия Георгий Николаевич сосредотачивает на совершен­ствовании строящихся многоцелевых АПЛ проекта 971. Проект 971, как и проект 671, занимает особое место в творческой биографии Г.Н.Чернышёва – снова создается «базовая» многоцелевая АПЛ с оптимальными характеристиками и большими модернизационными возможностями. Но главным в этом проекте были исключительно низкие уровни акустического поля и установка нового значительно более эффективного гидроакустического комплекса.

Георгий Николаевич упорно и целеустремленно шёл к достижению пари­тета с США во взаимном обнаружении АПЛ. Он складывается из трех основных составляющих: собственной шумности АПЛ, потенциала её гидроакстического комплекса и корабельных помех работе ГАК. Мно­голетняя гонка за этим убегающим призраком достигла успешного фи­ниша постройкой серийных ПЛ проекта 971. Был завершён огромный труд, с учетом предложений институтов и Заказчика, найдены и реализованы нетрадиционные конструктивные решения.
Уже испытания головного корабля проекта 971 показали, что мы вы­ходим на уровень лучших зарубежных аналогов, а дальнейшее совершен­ствование серийных кораблей закрепило этот успех. В последних кораблях серии было достигнуто превосходство над усовершенствованными лодка­ми типа «Лос-Анджелес» и, по мнению зарубежных специалистов, уровень скрытности нашх кораблей приблизился к таковому у американской много­целевой АПЛ 4-го поколения «Сивульф».

Так закончилась многолетняя трудная борьба за лик­видацию нашего отставания в важнейшей характеристике подводной лод­ки – её скрытности. И вклад Георгия Николаевича в решение этой государственной проблемы невозможно переоценить. За этот проект Г.Н.Чернышёв был удостоен звания Лауреата Государственной премии РФ.
Личностные качества Г.Н.Чернышёва как главного конструктора и как человека являются важнейшим фактором, определившим успех разви­тия АПЛ из противолодочных с торпедным вооружением в многоцелевые с торпедо­ракетным оружием и высокими ТТХ. Речь идет не только о бремени огромной ответственности главного конструктора за все решения, принятые в проекте, не только о том, что под всеми документами по передаче ВМФ каждой построенной по его проектам АПЛ стоит его подпись. Это талант конструктора, помноженный на огромное трудолюбие и чув­ство ответственности, способность внимательно и вдумчиво анализировать множество вариантов и выбирать нужный. Как дирижёр огромного оркест­ра при помощи различных инструментов создаёт ярко и гармонично звучащее произ­ведение, так и Г.Н.Чернышёв создавал свои стремительные и элегантные корабли. Он был терпим к оппонентам и обладал прекрасным чувством юмора. За 40 лет ему частенько приходилось доказывать свою правоту, спорить, настаивать, уговаривать. И чаще всего он добивался нужного решения.
В нём жило вечное стремление повысить эффективность своих ко­раблей не только в период их проектирования, но и в процессе строительства. Так было с образцами торпедо-ракетного оружия, с акусти­ческими и неакустическими средствами обнаружения. Все самые совер­шенные изделия начинали свою жизнь с его кораблей. Так было с его наи­более «многоцелевыми» проектами – 671 РТМ и 971. Они родились вне «плана», родились из инициативных предложений главного конструктора.
Но за постоянным стремлением к повышению эффективности кораблей и внедрению нового ощущалось умение твердо стоять на земле. Были смелые решения, но не было ошибок. Георгий Николаевич был разумным, рас­судительным человеком и понимал, что флоту нужен не только эффективный, но и надежный корабль, и нужен этот корабль своевременно. Чернышёв с большим уважением относился к морякам-подводникам, ценил их опыт и знания, был внимателен к предложениям флота.

Георгий Николаевич Чернышёв скончался в 1997 г. В последние годы своей жизни он много внимания уделял развитию на­учно-технического потенциала АПЛ многоцелевого назначения. А исход­ные позиции для дальнейшего совершенствования АПЛ проекта 971 были даже лучше, чем у проекта 671 в своё время. Беспокоило его сохране­ние этого класса кораб­лей в составе ВМФ в создавшейся тяжёлой экономической обстановке. Г.Н.Чернышёв считал, что многоцелевые АПЛ в со­ставе российского флота приобретают исключительно большое значение. Его обращение к руководству ВМФ и Министерству обороны по этому вопросу воспринима­лись с пониманием. Но практических шагов для предотвращения катаст­рофического уменьшения многоцелевых лодок в составе ВМФ предприня­то не было.

Будем надеяться, что угроза нашей безопасности, которая безусловно существует, заставит обратить самое серьезное внимание на развитие этого класса кораблей.

Источник: Сайт ProAtom 02/10/2017

От редактора: “К слову, 671 РТМ был моим первым “родным” кораблем, с которым я познакомился детально. Я облазил его “от киля до клотика”, побывал везде, спал в шпациях. Отличный пароход. Это было понятно. Не без недочетов, но отличный. Закономерным развитием идеи стало появление 971 проектов, которые и сегодня можно назвать одними из лучших кораблей в классе. Если не лучшими. Подождем полной серии 885-го”.

116. День Рождения К-3

On September 24, 2017, in ВМФ, Разное, by admin

День в истории: 24 сентября 1955 г. на заводе № 402 в Молотовске (Северном машиностроительном предприятии, г. Северодвинск) состоялась церемония закладки первой отечественной атомной подводной лодки К-3 («Ленинский комсомол»).

Источник: “Штурм глубины” (группа ВК)

От редактора: Экипаж этого парохода жил этажом ниже нас в казарме, в Гремихе. Но в то время пароход уже готовился на вывод из “линии”. Рад, что правильное решение принято. Не каждый пароход заслуживает стать музеем, но этот точно должен им быть.

Предполагаемый облик перспективной подводной лодки пятого поколения проекта “Хаски” (фото)

Объединенная судостроительная корпорация готова начать строительство атомных подводных лодок пятого поколения проекта “Хаски” в случае поступления соответствующего заказа от Минобороны России, сообщил РИА Новости в среду в ходе международного Военно-морского салона (МВМС-2017) вице-президент ОСК по военному кораблестроению Игорь Пономарев.
Ранее Объединенная судостроительная корпорация объявила о начале работ по формированию облика многоцелевых атомных подлодок пятого поколения проекта “Хаски”, они придут на смену АПЛ проекта 885 “Ясень”, которые сейчас строятся и поступают в боевой состав ВМФ России.
Пока известно лишь, что новая многоцелевая подлодка будет максимально унифицирована с перспективной стратегической АПЛ, а на ее вооружении будут гиперзвуковые ракеты “Циркон”.

Tagged with:  

В России ведутся испытания автономного необитаемого Подводного Аппарата (ПА) «Клавесин-2Р». Такими беспилотными ПА будет вооружена ПЛА специального назначения БС-64 «Подмосковье» проекта 09787.

screen-shot-2016-09-09-at-3-28-02-pm

 

Первое поколение ПА «Клавесин-1Р» (на фото) было испытано в 2007 году. Тогда были достигнуты: глубина погружения 6083 метра, дальность хода до 300 километров и автономность работы 5 суток. Характеристики второго поколения не называются официально – работы по проекту имеют важное значение для ВМФ России. У первого и второго типа «Клавесинов» схожие длина – около 6 метров и диаметр – 0,9-1 метр. Также в открытых источниках сообщается, что «Клавесин-1Р» представляет собой «глубоководный многоцелевой комплекс, оснащенный современными средствами автономной и гидроакустической навигации и связи, реконфигурируемой системой управления, целевой аппаратурой для выполнения поисковых работ, съемки и картографирования морского дна». Его испытания проходили в Японском море и Курильско-Камчатском глубоководном желобе. Также беспилотный ПА прошел «опытную эксплуатацию на континентальном шельфе в Арктике и при поиске затонувшего радиоизотопного источника в Охотском море».
В российских СМИ уже появились оригинальные гипотезы, что этот автономный аппарат является «младшим братом» ужаса американских адмиралов – атомной спецторпеды «Статус-6». Источник не располагает данными о возможном применении «Клавесина» в виде атомного дрона: судя по всему, это вполне обычный, для своего класса, ПА используемый для ведения разведки и поисковых работ. На это намекает и скромная скорость его передвижения, которую называют несколько российских источников – около 3 узлов (5,5 км/ч).
Предполагается, что кроме БС-64 новые аппараты этого семейства получат модернизированные атомные субмарины проекта 949АМ.

Примечание редактора: Скорее всего на фото прототип, уменьшенная копия “изделия” предназначенная для испытаний систем управления и прочей начинки. Судя по другим фотографиям, попавшим в сеть, на испытательной модели применены подруливающие устройства. Количество винтов говорит лишь о временной пропульсивной силовой установке замещающей реальную.

 

Источник: http://www.tehnoomsk.ru/node/2258

 

Проект подводного энергетического комплекса с ядерным реактором, который может быть использован и в оборонной сфере, готов к реализации. Об этом сообщил руководитель лаборатории Фонда перспективных исследований, главный конструктор ЦКБ МТ “Рубин” Евгений Торопов. “Для подводного энергетического комплекса мы можем создать объект с использованием реактора, отвечающего требованием МАГАТЭ (?). На сегодняшний день технических и научных проблем для создания такого комплекса нет”,- сказал Торопов, докладывая в ФПИ о ходе и предварительных результатах 2-го этапа реализации проекта “Айсберг”.

В ФПИ подчеркнули, что подводный энергетический комплекс “позволит решить проблему энергообеспечения удаленных потребителей как оборонного, так и народно-хозяйственного назначения”.

Проект ФПИ “Айсберг” реализуется с января 2015 года при головной роли АО “ЦКБ МТ “Рубин”. Проект предусматривает создание технологий и технических средств, обеспечивающих полностью автономное подводное (подледное) освоение месторождений углеводородов в арктических морях с тяжелыми ледовыми условиями. В частности, ведется разработка подводного автономного бурового комплекса, подводного автономного энергетического комплекса, подводного судна сейсморазведки, подводного транспортно-монтажного и сервисного комплекса.

В соответствии с задачами проекта, охрану подводных комплексов по добыче углеводородов и инфраструктуры месторождений планируется силами Военно-морского флота с использованием автономных средств самообороны.

Торопов рассказал, что по проекту энергетического комплекса завершены необходимые проработки, выполнено 3-D моделирование. Он отметил, что при одобрении правительством РФ и получения заявок от заинтересованных компаний воплощение проекта энергетического комплекса в жизнь может быть начато “в самое ближайшее время”.

Согласно макету энергетического комплекса, ресурс установки – 200 тыс. часов, срок службы – 30 лет, мощность – 24 МВт, период непрерывной работы без присутствия человека и технического обслуживания – 8,000 часов.

“Поддержку в дальнейшей реализации проекта оказывают Минобороны России, госкорпорация “Росатом”, ПАО “Газпром”, АО “ОСК”, которые уже сегодня учитывают в своих инновационных и долгосрочных планах реализацию создаваемых в рамках проекта “Айсберг” перспективных автономных комплексов” – заявил руководитель проектной группы ФПИ Виктор Литвиненко.

“В тесном взаимодействии с Минэкономразвития России создание пилотных образцов автономных комплексов предусматривается, в том числе, в рамках проекта государственной программы “Социально-экономическое развитие арктической зоны Российской Федерации на период до 2025 года и дальнейшую перспективу” – добавил он.

 

Источник: ИнтерФакс

“Белоснежных надстроек этого лайнера никогда не коснется копоть дымовых труб. Компактные силовые установки невероятной мощности, недостижимая прежде скорость, экономичность и неограниченная дальность плавания”.

Таким представляли идеальный корабль в середине XX века. Казалось еще чуть-чуть, и ядерные силовые установки неузнаваемо изменят облик флота – человеческая цивилизация с надеждой и ликованием встречала наступившую Эру Атома, готовясь в скором времени воспользоваться всеми преимуществами «даровой» энергии радиоактивного распада вещества.

В 1955 году, в рамках программы «Мирный атом», президент Эйзенхауэр озвучил планы о создании судна с ядерной силовой установкой (ЯСУ) – концепт-демонстратор перспективных технологий, чье появление ответит на вопрос о целесообразности применения ЯСУ в интересах торгового флота.

Реактор на борту обещал немало соблазнительных преимуществ: атомоходу требовалась заправка один раз в несколько лет, корабль мог длительное время оставаться в океане без необходимости захода в порт – автономность атомохода ограничивалась лишь выносливостью экипажа и запасами продовольствия на его борту. ЯСУ обеспечивала высокую экономическую скорость хода, а отсутствие топливных цистерн и компактность силовой установки (по крайней мере, так казалось инженерам-кораблестроителям) позволит обеспечить дополнительное пространство для размещения экипажа и полезного груза.

В то же время, исследователи отдавали себе отчет в том, что использование ядерной силовой установки вызовет немало сложностей с её последующей эксплуатацией – меры по обеспечению радиационной безопасности и связанные с этим трудностей по посещению многих зарубежных портов. Не говоря о том, что строительство столь экзотического судна изначально «влетит в копеечку».

Не стоит забывать, что речь идет о середине 1950-х – не прошло и года, как в радиоэфире прозвучало историческое сообщение «Underway on nuclear power» (Идем на атомной энергии!), отправленное с борта подлодки «Наутилус» в январе 1955 года. Специалисты в области кораблестроения имели самые расплывчатые представления об ядерных реакторах, их особенностях, сильных и слабых сторонах. Как обстоят дела с надежностью? Сколько стоит их жизненный цикл? Смогут ли обещанные преимущества ЯСУ перевесить недостатки, связанные со строительством и эксплуатацией гражданского атомохода?

На все вопросы должна была ответить NS Savannah – 180-метровая белоснежная красавица, спущенная на воду в 1959 году.

Инициировал строительство судна президент Эйзенхаур в 1955 году, в рамках программы, в точности совпадающей с советской – «Мирный атом». В 1956 году Конгресс одобрил строительство, и в в марте 1962 года Savannah была спущена на воду. Ледокол Ленин спустили на воду 5 декабря 1957 года.

Экспериментальный грузопассажирский атомоход полным водоизмещением 22 тысячи тонн. Экипаж – 124 человека. 60 пассажиро-мест. Единственный ядерный реактор тепловой мощностью 74 МВт обеспечивал экономическую скорость хода 20 узлов (весьма и весьма солидно, даже по современным меркам). Одной зарядки реактора хватало на 300 000 морских миль (полмиллиона километров).

Название судна было выбрано не случайно – «Саванна» — именно такое имя носил парусно-паровой пакетбот, первым из пароходов пересекший Атлантику в 1819 году.

«Саванна» создавалась, как «голубь мира». Супер-корабль, объединивший в себе самые современные достижения науки и техники, должен был познакомить Старый Свет с технологиями «мирного атома» и продемонстрировать безопасность кораблей с ЯСУ (янки работали на перспективу – в будущем это облегчит заход в иностранные порты атомных авианосцев, крейсеров и подлодок).

 

Savannah внешне производила весьма сильное впечатление.  Стремясь подчеркнуть особый статус атомохода, дизайнеры придали ему облик роскошной яхты – удлиненный корпус, стремительные обводы, белоснежные обтекаемые надстройки с обзорными площадками и верандами. Даже грузовые стрелы и грузоподъемные механизмы имели привлекательный облик – ничуть не похоже на торчащие ржавые мачты обычных сухогрузов. Некоторые историки судоходства и вообще окрестили ее красивейшим грузовым судном.

Скорость в 23 узла, для тех времен, была рекордной для грузовых судов. При всем том грузов она брала всего 8500 тонн, явно недостаточно. Любое другое судно аналогичного дедвейта брало больше. Кроме того, трюмы были неудачно расположены, что значительно замедляло скорость грузовых работ в портах. Экипаж был значительно больше, чем на обычных судах. Для эксплуатации судна потребовалась целая специальная организация, ведавшая вопросами заходов в порты и ремонта. Экипаж прошел специальную подготовку. Причем количество людей, прошедших специальные курсы для работы на атомном судне, показывает, что правительство США планировало строительство новых атомных судов.

Однако изначально заложенная при конструировании Savannah ошибка свела все усилия на нет. Любому брокеру при взгляде на ТТХ судна становилось понятно, что с экономической точки зрения оно – банкрот. Слишком малы грузовые помещения, а пассажирские большей частью оставались пустыми. Ни рыба, в общем, ни мясо. Необходимо было делать что-то одно – грузовое или пассажирское, и провести при том тщательные экономические расчеты.

Немалое значение уделялось интерьерам: изначально на борту атомохода были обустроены 30 кают класса «люкс» с кондиционерами и индивидуальными ванными, ресторан на 75 мест, богато украшенный живописью и скульптурами, салон-кинозал, бассейн и библиотека. Кроме того, на борту имелась лаборатория радиационного контроля, а камбуз украшало новейшее «чудо техники» – микроволновая печь с водяным охлаждением, подарок от фирмы Ratheyon.

За все сверкающее великолепие было заплачено «звонкой монетой».  47 миллионов долларов, из которых 28,3 миллиона было потрачено на ЯСУ и ядерное топливо.

Поначалу казалось, что результат стоил всех вложений. «Саванна» обладала отличной мореходностью и рекордной скоростью хода среди всех прочих грузовых судов тех лет. Ей не требовались регулярные заправки топливом, а облик атомохода производил сильное впечатление на любого, кому удалось вблизи (или хотя бы издали) увидеть это роскошное чудо техники произведение искусства.

 

Увы, любому судовладельцу было достаточно одного взгляда, чтобы понять: «Саванна» нерентабельна. В трюмах и на грузовых палубах атомохода помещалось всего лишь 8500 тонн груза. Да любое судно аналогичных размеров имело в три раза большую грузоподъемность!

Но и это еще не все – слишком стремительные обводы и удлиненная носовая часть судна заметно усложняли погрузочные операции. Требовался ручной труд, все это приводило к задержкам в доставке и простоям в портах назначения.

Топливная экономичность, благодаря атомному реактору? О, это великая тема, требующая развернутого ответа.

Как оказалось на практике, ЯСУ вместе с активной зоной реактора, контурами теплоносителя и сотнями тонн биологической защиты оказалась гораздо крупнее, чем машинное отделение обычного сухогруза (это при том, что полностью отказаться от обычной ГЭУ инженеры не решились – на борту «Саванны» сохранилась пара аварийных дизель-генераторов с запасом топлива).

Реакторы на торговых судах. Конец романтики

За наглухо задраенной дверью — реакторный отсек

Мало того, для управления атомоходом требовался в два раз больший экипаж – все это еще более удорожало стоимость эксплуатации и уменьшало количество полезного пространства на борту атомного судна. Также, стоит отметить разницу в затратах на содержание высококлассных специалистов-атомщиков, по сравнению с мотористами и механиками на обычном сухогрузе.

Для обслуживания судна требовалась специальная инфраструктура и регулярные проверки на предмет радиоактивности и нормальной работы реактора.
Наконец, стоимость 32-х тепловыделяющих элементов из диоксида урана (суммарная масса U-235 и U238 – семь тонн) с учетом работ по их замене и последующей утилизации – обошлось не дешевле заправки судна обычным мазутом.

Позже будет подсчитано, что ежегодные эксплуатационные затраты «Саванны» превышали показатели аналогичного по грузоподъемности сухогруза типа «Маринер» на 2 млн. долларов. Разорительная сумма, особенно в ценах полувековой давности.

Лаз в преисподнюю. Реактор «Саванны»

Впрочем, это еще пустяки — настоящие проблемы ожидали «Саванну» по прибытии в Австралию. Атомоход просто не пустили в австралийские территориальные воды. Аналогичные истории произошли у берегов Японии и Новой Зеландии.

Каждому заходу в зарубежный порт предшествовала длительная бюрократическая волокита – требовалось представить полную информацию о судне и сроках захода в порт, в объеме, достаточном для того, чтобы портовые власти смогли принять необходимые меры безопасности. Отдельный причал с особым режимом допуска. Охрана. Группы радиационного контроля. На случай возможной аварии, рядом с атомоходом круглосуточно стояли «под парами» несколько буксиров, готовые в любой момент вывести радиоактивную груду металла за пределы акватории порта.

Случились то, чего больше всего опасались создатели «Саванны». Бомбардировки Хиросимы и Нагасаки, вкупе с шокирующими результатами журналистских расследований на тему последствий радиационного облучения сделали свое дело – власти большинства стран неиллюзорно боялись судна с ЯСУ и крайне неохотно пускали «Саванну» в свои территориальные воды. В ряде случаев визит сопровождался серьезными акциями протеста со стороны местного населения. Возмущались «зеленые» — в СМИ проникла информация о том, что «Саванна» ежегодно сливает за борт 115 тысяч галлонов технической воды из системы охлаждения реактора — несмотря на все оправдания специалистов-атомщиков в том, что вода нерадиоактивна и не соприкасается с активной зоной.

Разумеется, какое-либо коммерческое использование атомохода в таких условиях оказалась невозможным. Тем не менее, за 10 лет своей активной карьеры (1962-1972 гг.) «Саванна» прошла 450 тыс. миль (720 тыс. км), посетила 45 зарубежных портов. На борту атомохода побывали свыше 1,4 миллиона зарубежных гостей.

 

Реакторы на торговых судах. Конец романтики

Пост управления ЯСУ
Образно выражаясь, «Саванна» повторила путь своего знаменитого предка – парусный пароход «Саванна», первый из пароходов пересекший Атлантику, также оказался на свалке истории – судно-рекордсмен оказалось нерентабельным в круговороте серых будней.

Что касается современного атомохода, то, несмотря на свой провальный дебют в роли грузопассажирского судна, «Саванна» немало потешила самолюбие американской нации и, в целом, смогла изменить представление о кораблях с ЯСУ, как о смертельно опасных и ненадежных образцах техники.

После перевода в резерв, «Саванна» с заглушенным реактором 9 лет провела на стоянке в порту одноименного городе в штате Джорджия, городское правительство предлагало планы о переоборудовании судна в плавучий отель. Однако, судьба распорядилась иначе — в 1981 году «Саванну» поставили в качестве экспоната в морском музее «Пэтриот Поинт». Однако и здесь её ждала неудача – несмотря на возможность прогуляться по роскошным салонам и заглянуть сквозь окно в настоящий реакторный отсек, посетители не оценили легендарный атомоход, сосредоточив все внимание на пришвартованном неподалеку авианосце «Йорктаун».

 

1955 – Эйзенхауэр внес предложение о строительстве коммерческого судна с ядерной силовой установкой
1956 – Конгресс одобрил проект строительства судна
1959 – судно крестила первая леди США, супруга президента Эйзенхауера, дав ему имя Savannah
1962 – 23 марта судно спущено на воду
1965-1971 – Savannah эксплуатируется в качестве грузо-пассажирского судна
1972 – Savannah поставлена на прикол из-за больших убытков
2006, август — Морская Администрация США Marad заплатит около миллиона долларов за подготовку демонтажа ядерного реактора Savannah. 15 августа судно отбуксируют с прикола, стоянки Резервного флота на реке Джеймс, на верфи Колонна в Норфолке.

В течении двух месяцев на судне проведут все работы, необходимые для последующего демонтажа реактора. Работы будут проводиться в сухом доке, куда Savannah и поставят. Топливо из реактора выгрузили давным-давно, в последние годы Savannah выступала в роли плавучего музея в Чарльстоне, Южная Каролина.

Окончательная судьба судна еще не решена – его могут отправить на слом или найти другое предназначение – оставить в качестве судна-музея, памятника первому ядерному реактору в коммерческом флоте и судовой архитектуре 50-х.

В настоящий момент обновленная и подкрашенная «Саванна» тихо ржавеет в порту г. Балтимор, и дальнейшая её судьба остается неясной. Несмотря на статус «исторического объекта» все чаще звучат предложения отправить атомоход на слом.

Однако, если не принимать во внимание атомные ледоколы, помимо «Саванны» в мире существовало еще три торговых судна с ядерной силовой установкой — «Отто Ган», «Муцу» и «Севморпуть».

 

Немецкая драма

Заинтересованное американскими разработками в области ядерных технологий, правительство ФРГ в 1960 году анонсировало собственный проект экспериментального судна с ЯСУ – рудовоз Otto Hahn («Отто Ган»).

Судно было заложено в 1963 году компанией Howaldtswerke-Deutsche Werft в городе Киле. Спуск на воду состоялся в 1964 году. Судно было названо в честь Отто Гана, выдающегося немецкого радиохимика, нобелевского лауреата, открывшего ядерную изомерию (Уран Z) и расщепление урана.

Первым капитаном был Генрих Леманн-Вилленброк, известный германской подводник второй мировой войны. В 1968 году был запущен 38-мегаваттный атомный реактор судна, и начались ходовые испытания. В октябре того же года Отто Ган был сертифицирован как торговое и исследовательское судно.

В общем и целом, немцы наступили на те же грабли, что и их американские коллеги. К моменту введия «Отто Ган» в эксплуатацию (1968 год), скандальная эйфория вокруг гражданских атомоходов уже близилась к закату – в развитых странах началось массовое строительство АЭС и атомных военных кораблей (подлодок), общественность восприняла Эру Атома, как должное. Но это не спасло атомоход «Отто Ган» от образа малополезного и нерентабельного судна.

Реакторы на торговых судах. Конец романтики

В отличии от американского пиар-проекта, «немец» проектировался как настоящий рудовоз, для работы на трансатлантических линиях. 17 тысяч тонн водоизмещения, один реактор тепловой мощностью 38МВт. Скорость хода 17 узлов. Экипаж – 60 человек (+ 35 человек научный персонал).

За 10 лет своей активной службы «Отто Ган» прошел 650 тыс. миль (1,2 млн. км), посетил 33 порта в 22 странах, доставлял руду и сырье для химического производства в Германию из Африки и Южной Америки.

Немалые сложности в карьере рудовоза вызвал запрет руководства Суэцкого на проход этим кратчайшим путем из Средиземного моря в Индийский океан – утомленные бесконечными бюрократическими ограничениями, необходимостью лицензирования для захода в каждый новый порт, а также дороговизной эксплуатации атомохода, немцы решились на отчаянный шаг.

Реакторы на торговых судах. Конец романтики

 

В 1972 году, после четырёх лет работы, реактор был перезаправлен. Судно прошло около 250 000 морских миль (463 000 километров), использовав 22 килограмма урана. В 1979 году Отто Ган было деактивировано. Его реактор и двигатель были удалены и заменены обычной дизельной силовой установкой. К этому времени судно прошло 650 000 морских миль (1 200 000 километров) на ядерном топливе, побывав в 33 портах 22 стран

В 1983 году судно переоборудовано в контейнеровоз. 19 ноября того же года Otto Hahn было переименовано в Norasia Susan. Затем в 1985 году оно получило имя Norasia Helga, в 1989 — Madre. По состоянию на 2007 год, Madre все еще находится в действии, ходит под флагом Либерии, под управлением греческой компании Alon Maritime с 1999 года. С 2006 года судно принадлежит компании Domine Maritime, зарегистрированной в Либерии.

 

Японская трагикомедия

Хитрые японцы не пустили «Саванну» в свои порты, однако сделали определенные выводы – в 1968 году на верфи в Токио был заложен атомный сухогруз «Фукусима» «Муцу».

Жизненный путь этого судна с самого начала был омрачен большим количеством неисправностей – подозревая неладное, японская общественность запретила проводить испытания у причала. Первый запуск реактора было решено провести в открытом океане – «Муцу» отбуксировали на 800 км от побережья Японии.
Как показали дальнейшие события, общественность была права – первый запуск реактора обернулся радиационной аварией: защита реактора не справилась со своей задачей.

По возвращению в порт города Оминато экипаж «Муцу» ждало новое испытание: местный рыбак перегородил путь своей джонкой — убирайте атомоход куда хотите, меня это не волнует. Но в порт он не зайдет!
Отважный японец держал оборону 50 дней — наконец, было достигнуто соглашение на короткий заход в порт Оминато с последующим переводом атомохода на военную базу в Сасебо.

Реакторы на торговых судах. Конец романтики

Атомоход «Муцу»

 

Океанографическое судно «Мирай», наши дни

Трагикомедия японского атомохода «Муцу» продолжалась без малого 20 лет. К 1990 году было объявлено о завершении всех необходимых доработок и корректировок в конструкции атомохода, «Муцу» совершил несколько тестовых выходов в море, увы, судьба проекта была предрешена – в 1995 году реактор был деактивирован и удален, взамен «Муцу» получил обычную ГЭУ. Всем бедам в один миг пришел конец.

За четверть века бесконечных скандалов, аварий и ремонтов, проект торгового атомохода «Муцу» прошел 51 тыс. миль и опустошил японскую казну на 120 млрд. иен (1,2 млрд. долларов).

В настоящий момент бывший атомоход успешно используется в качестве океанографического судна «Мирай».

 

Русский путь

Этот сюжет кардинально отличается от всех предыдущих историй. Советский Союз – единственный, кто смог найти правильную нишу для гражданских атомоходов и получить с этих проектов солидную прибыль.
В своих расчетах советские инженеры исходили из очевидных фактов. Какие два исключительных преимущества имеются у ядерных силовых установок?

1. Колоссальная концентрация энергии.
2. Возможность её выделения без участия кислорода

Второе свойство автоматически дает ЯСУ «зеленый свет» на подводный флот.

Что касается высокой концентрации энергии и возможности длительной работы реактора без дозаправки и перезарядки – ответ подсказала сама география. Арктика!

 

Реакторы на торговых судах. Конец романтики

Именно в полярных широтах лучше всего реализуются преимущества ядерных силовых установок: специфика работы ледокольного флота сопряжена с постоянным режимом максимальной мощности. Ледоколы длительное время работают в отрыве от портов, – уход с трассы для пополнения запасов топлива чреват значительными убытками. Здесь нет никаких бюрократических запретов и ограничений – круши лед и веди караван на Восток: в Диксон, Игарку, Тикси или к Беринговому морю.

Первый в мире гражданский атомоход – ледокол «Ленин» (1957 год) продемонстрировал массу преимуществ по сравнению со своими неатомными «коллегами». В июне 1971 года он стал первым надводным кораблем в истории, кому удалось пройти севернее Новой Земли.

 

А на помощь ему уже шли новые атомные исполины – четыре магистральных ледокола типа «Арктика». Этих монстров не мог остановить даже самый прочный лед – в 1977 году «Арктика» добралась до Северного Полюса.
Но это было только начало – 30 июля 2013 года атомный ледокол «50 лет Победы» достиг Полюса в сотый раз!
Атомные ледоколы превратили Северный морской путь в хорошо развитую транспортную артерию, обеспечив круглогодичную навигацию в западном секторе Арктики. Была исключена необходимость вынужденных зимовок, повышены скорость и безопасность проводки судов.

 

Реакторы на торговых судах. Конец романтики

Всего их было девять. Девять героев полярных широт:
«Ленин», «Арктика», «Сибирь», «Россия», «Советский Союз», «50 лет Победы», «Ямал», а также два атомных ледокола с малой осадкой для работы в устьях сибирских рек – «Таймыр» и «Вайгач».

Был у нашей страны и десятый гражданский атомоход – атомный лихтеровоз ледокольного типа «Севморпуть». Четвертое в морской истории торговое судно с ЯСУ. Мощная машина водоизмещением 60 тысяч тонн, способная самостоятельно передвигаться во льдах толщиной 1,5 метра. Длина исполинского корабля – 260 метров, скорость хода в открытой воде – 20 узлов. Грузовая вместимость: 74 несамоходные баржи-лихера или 1300 стандартных 20-футовых контейнеров.

 

Атомный лихтеровоз-контейнеровоз «Севморпуть» — единственное в России ледокольно-транспортное судно с ядерной энергетической установкой, было построено на Керченском судостроительном заводе «Залив» им. Б.Е. Бутомы в период с 01.06.82 по 31.12.88. Проект судна разработан на основании совместного решения Минморфлота и Минсудпрома № С-13/01360 от 30.05.78 в соответствии с техническим заданием на его разработку. Корпус судна спроектирован и построен на категорию ледовых подкреплений «УЛА» в соответствии с требованиями Правил Регистра СССР изд.1981г.

Судно спроектировано, построено и эксплуатируется с учетом выполнения отечественных и международных правил, конвенций и норм, в том числе:

  • Кодекса ИМО по безопасности ядерных торговых судов;
  • Международной конвенции о безопасности торговых судов на ядерном топливе;
  • Норм радиационной безопасности;
  • Правил ядерной безопасности;
  • Основных санитарных правил.

Атомоход «Севморпуть» сдан в эксплуатацию 31.12.88г.

С момента подъема флага и начала работ лихтеровоз «Севморпуть» прошел 302000 миль, перевез более 1,5 миллионов тонн грузов, осуществив за это время всего лишь одну перезарядку ядерного реактора.

Для сравнения: судам типа СА-15, работающим на Дудинской  линии пришлось бы выполнить почти 100 рейсов, чтобы перевести такое  же количество груза, израсходовав при этом почти 100000 тонн топлива

 

 

Назначение

Судно предназначено для перевозки:

  • лихтеров типа ЛЭШ в трюмах, в специально оборудованных ячейках и на верхней палубе с погрузкой и выгрузкой их судовым лихтерным краном;
  • контейнеров международного стандарта ИСО в трюмах и на верхней палубе без специального переоборудования судна, погрузка-выгрузка контейнеров должна осуществляться береговыми средствами. Ограниченные партии могут быть погружены и выгружены контейнерными приставками лихтерного крана.

Всего судно может взять на борт 74 лихтера грузоподъемностью по 300 т или 1328 двадцатифутовых контейнеров.

Прочность люковых закрытий позволяет перевозку на них загруженных лихтеров массой по 450 тонн каждый, установленных в два яруса по высоте, или 20 и 40 футовых контейнеров международного стандарта в три яруса по высоте с максимально допустимой массой каждого контейнера 20,3 и 30,5 тонн соответственно.

«Севморпуть» способен самостоятельно преодолевать лед толщиной до 1 м. Ядерная энергетическая установка не ограничивает дальность и продолжительность плавания.

 

 

Основные характеристики

Тип судна — одновинтовой, однопалубный атомоход с избыточным надводным бортом,  баком,  носовым расположением жилой надстройки,  промежуточным расположением машинного отделения и реакторного отсека, с наклонным форштевнем ледокольного типа,  крейсерской кормой, срезанной в надводной части по форме транца.
Судно способно самостоятельно идти в сплошных ровных ледяных полях толщиной до 1 метра со скоростью около двух узлов. Корпус разделен 11 поперечными водонепроницаемыми переборками на 12 отсеков, в числе которых 6 грузовых трюмов.

Длина наибольшая, м 260
Длина между перпендикулярами, м 228,8
Ширина наибольшая, м 32,2
Высота борта у миделя, м 18,3
Осадка по летнюю грузовую марку, м 11,8
Осадка спецификационная (для плавания во льдах), м 10,65
Водоизмещение судна в морской воде плотностью 1.025 т/м3
при осадке по летнюю грузовую марку 11,8 м, т
61880
Дедвейт судна при осадке по летнюю грузовую марку, т 33980
Дедвейт судна при спецификационной осадке, т 26480
Размер грузовых люков в свету:
– длина, м 20,6
 – ширина, м 19,05

Скорость хода судна при средней осадке 10 м и мощности ГТЗА 29420 кВт, узел 20,8

Энергетическая установка

Энергетическая установка состоит из:

  • Главного турбозубчатого агрегата мощностью 29420 кВт и при частоте вращения гребного вала 115 об/мин, работающего на гребной винт регулируемого шага.
  • Атомной паропроизводящей установки производительностью 215 тонн пара в час, при давлении 40 ата и температуре 290оС.
  • Вспомогательной установки:
  • 3 турбогенераторов по 1700 кВт
  • 2 резервных дизель-генераторов по 600 кВт
  • 2 аварийных дизель-генераторов по 200 кВт. Котел аварийного хода (в случае выхода из строя АППУ) паропроизводительностью 50 т в час при давлении 25 кг/см2 и температуре пара 360оС, работающий на дизельном топливе.

Характеристика кранов

На лихтеровозе установлены подъемные краны:

1.Кран «КОНЕ»:

Грузоподъемность, т 500
Скорость подъема, опускания, м/мин 0.5¸80
Скорость передвижения крана, м/мин 0.3¸50
Высота подъема:
– полная, м 27
– от головки рельса, м 12
Колея подкранового пути, мм 21336

На лихтерном кране установлены две контейнерные приставки грузоподъемностью по 38,0 т и два вспомогательных крана по 3,0 т. Приставки предназначены для погрузки и разгрузки ограниченных партий 20 и 40 футовых контейнеров в портах, не оборудованных береговыми контейнерными кранами.

2. Два  крана грузоподъемностью  16 тонн .

3. Два  крана грузоподъемностью 3,2 тонны.

Увы, судьба оказалась безжалостна к этому замечательному кораблю: с уменьшением потока грузоперевозок в Арктике, он оказался нерентабельным. Несколько лет назад проскальзывала информация о возможном переоборудовании «Севморпути» в буровое судно, однако все оказалось гораздо печальнее – в 2012 году уникальный атомный лихтеровоз был исключен из регистра морских судов и отправлен на слом.

АПД. А вот и новость подоспела: Севморпуть был, действительно. исключен из списков действующего флота и поставлен в отстой, но на слом его никто не отправлял. “В конце декабря Генеральный директор Госкорпорации «Росатом» С.В. Кириенко подписал приказ о восстановление атомного лихтеровоза-контейнеровоза «Севморпуть». Уникальное судно снова начнет работать в феврале 2016 года.
Источник: http://masterok.livejournal.com/1335918.html

 

29 июля на оборонной судоверфи “Севмаш” в Архангельской обл. была заложена очередная атомная подводная лодка проекта 885М (08851) “Ясень-М”, “Пермь”.

Проект многоцелевой ПЛА четвертого поколения 885 (08850) “Ясень” разработан в 1990-х гг. Санкт-Петербургским морским бюро машиностроения (СПМБМ) “Малахит” под руководством главного конструктора Владимира Попова. Создан на базе проектов 705(К) “Лира” и 971 “Щука-Б”. Строительством “Ясеней” занимается ПО “СевМаш” в Северодвинске, Архангельской обл.

ПЛА предназначена для уничтожения подводных лодок и надводных кораблей противника, военно-морских баз, портов, корабельных группировок и других целей. “Ясень” имеет полуторакорпусную конструкцию (“легкий корпус”, придающий субмарине обтекаемую форму и закрывающий гидролакатор, присутствует только в носовой части).

Тактико-технические характеристики проекта

Согласно открытым публикациям:

  • Длина лодок проекта 885 составляет около 139 м, ширина – около 13 м, осадка – 10 м.
  • Надводное водоизмещение – 8 тыс. 600 т, подводное – до 13 тыс. 800 т.
  • Максимальная глубина погружения – до 600 м.
  • Надводная скорость – 16 узлов, подводная – до 31 узла.
  • Автономность плавания более 100 суток, экипаж – 85-90 человек.

Подводная лодка оснащена одновальной паротурбинной АЭУ мощностью около 43 тыс. л. с (на винте).

Тепловая мощность водо-водяного реактора ОК-650В – 190 мегаватт (лодки модернизированного проекта 885М получат АЭУ мощностью свыше 200 мегаватт, вероятнее всего с реактором последующего покаления).

Вооружение:

  • 8 вертикальных шахт для запуска крылатых ракет “Оникс” и “Калибр”;
  • 10 торпедных аппаратов калибра 533 мм (в боекомплект входят 30 торпед).

В перспективе возможно оснащение крылатыми ракетами нового типа Х-101 (Х-102) и Универсальными глубоководными самонаводящимися торпедами (УГСТ).

Корабли серии

Головная подлодка серии, К-560 “Северодвинск” (заводской номер 160), заложена на “Севмаше” 21 декабря 1993 г., спущена на воду 15 июня 2010 г., 30 декабря 2013 г. передана ВМФ РФ в опытную эксплуатацию, с 17 июня 2014 г. – в строю на Северном флоте. Следующие подлодки строятся по модернизированному проекту 885М (08851) “Ясень-М”.

Их отличают оптимизированные обводы корпуса, обновленные комплексы радиоэлектронного вооружения и автоматики. Контракт на строительство лодки с заводским номером 161 заключен между Минобороны России и “Севмашем” 6 декабря 2005 г. Строительство последующих серийных лодок с заводскими номерами 162-166 предусмотрено контрактом от 9 ноября 2011 г., заключенными с ОСК.

  • Вторая субмарина, К-561 “Казань” (заводской номер 161), заложена 24 июля 2009 г., передача флоту ожидается в 2018 г.
  • Третья субмарина, К-573 “Новосибирск” (заводской номер 162), заложена 26 июля 2013 г., передача флоту намечена на 2019 г.
  • Четвертая субмарина, К-571 “Красноярск” (заводской номер 163), заложена 27 июля 2014 г.
  • Пятая субмарина, К-564 “Архангельск” (заводской номер 164), заложена 19 марта 2015 г.
  • Шестая субмарина “Пермь” (тактический и заводской номер неизвестны 165 – ?), заложена 29 июля 2016 г.

В рамках Государственной программы вооружений до 2020 г. для ВМФ РФ предполагается построить шесть “Ясеней”. В 2017 г. ожидается закладка еще одного корабля – седьмой “Ясень” планируется передать флоту в 2023 г.

 

Источник: http://tass.ru/info/3496563

МОСКВА, 29 июля. /ТАСС/. Принципы и наработки, заложенные в основу многоцелевых атомных подлодок типа “Ясень”, будут использованы при проектировании субмарин следующего, пятого поколения, которые начнут строить после 2020 года. Об этом сообщил в интервью ТАСС гендиректор конструкторского бюро “Малахит”, разработавшего “Ясени”, Владимир Дорофеев. 

“При создании подлодок пятого поколения будут учтены результаты строительства, испытаний, опытной и штатной эксплуатации головной подлодки проекта 885 “Северодвинск”, – сказал собеседник агентства.

По его словам, концепция частичной модульности, универсализации задач “Ясеней” “показала свою полную жизнеспособность”. “Решения, заложенные в основу создания многоцелевых АПЛ российского флота, прошли проверку временем и будут реализованы при создании субмарин пятого поколения”, – заявил глава конструкторского бюро. Отвечая на вопрос о возможных сроках начала строительства первой подлодки нового поколения, Дорофеев сказал, что речь идет о корабле, который “будет заложен после 2020 года”.

Сейчас в строю находится только одна подводная лодка типа “Ясень” – “Северодвинск”. Следующие субмарины этого типа строятся по усовершенствованному проекту 885М. Первая из них, “Казань”, была заложена в 2009 году и пока не передана ВМФ России.

Год назад глава “Малахита” сообщал, что конструкторское бюро уже работает над проектом атомных подводных лодок нового поколения. Позднее стало известно, что речь идет о проекте “Хаски”. По оценке Объединенной судостроительной корпорации, формирование облика перспективных субмарин будет завершено в течение двух лет.

Источник: http://tass.ru/armiya-i-opk/3494614

(Материал в работе)

Принимать за истину не советую (см. вопросы в конце). Автор тот еще “эксперт”. Но кое-что интересное в этой статье есть:

В годовом отчете северодвинского филиала КБ «Рубин» — КБ «Рубин-Север» — содержится крайне любопытная информация, освежающая в памяти ноябрьские события прошлого года, которые вызвали бурное обсуждение не только в нашей стране.

Тогда выяснилось, что Россия полным ходом ведет разработку уникального оружия. Такого, которое способно гарантировано пробить громадную брешь в массированной обороне вероятно возможного противника (ВВП). То есть, это не просто асимметричный ответ на бездумное строительство ЕвроПРО, а решение, с лихвой перекрывающее и ПРО, и натовские батальоны в Польше и Прибалтике, и прочие «недружелюбные» по отношению к России действия.

Зачем в Северодвинске строят три атомных подводных лодки специального назначения? Согласно нынешнему отчету, в Северодвинске проводится ОКР по проекту номер 09853. Содержание данной работы не расшифровывается. Однако, судя по порядковому номеру проекта, который идет непосредственно за номерами проектов двух атомных подводных лодок специального назначения (ПЛА СН) 09851 «Хабаровск» и 09852 «Белгород», речь может идти о создании похожего по назначению атомохода.

«Белгород» и «Хабаровск» строятся на «Севмаше» в условиях строгой секретности. «Белгород» предполагается спустить на воду в следующем году, «Хабаровск» — в 2018 году. И, по поступающим скупым сведениям, можно предположить, что речь идет о создании в нашей стране ПЛА нового, пятого поколения (российские новейшие многоцелевые атомные подводные лодки типа «Ясень» и «Борей», а также их американские аналоги «Сивулф» и «Вирджиния» относятся к поколению номер четыре).

«Белгород» — исследовательская ПЛА с крайне широкими функциями. Есть основание предположить, что на ней будут «обкатывать» принципиально новое оружие. А затем оно, видимо, будет установлено и на «Хабаровске», и на новой лодке только что «всплывшего» в открытых источниках проекта 09853.

Но прежде, чем вести разговор о новом корабле, вернемся к той сенсации, что случилась в прошлом ноябре. Тогда во время совещания в Сочи по вопросам развития «оборонки», которое проводил президент Владимир Путин, два федеральных телеканала как бы по ошибке показали слайд с грифом «Совершенно секретно». В нем содержалась концепция и сроки реализации океанской многоцелевой ударной системы «Статус-6». «Засветили» и разработчика — ЦКБ «Рубин», и назначение системы. И она такова: «поражение важных объектов экономики противника в районе побережья и нанесение гарантированного неприемлемого ущерба территории страны путем создания зон обширного радиоактивного заражения, непригодных для осуществления в этих зонах военной, хозяйственно-экономической и иной деятельности в течение длительного времени».

При расшифровке скриншота Минобороны, угодившего на телеэкран, было установлено, что носителями нового оружия должны стать именно лодки «Белгород» и «Хабаровск», несмотря на то, что они пока как бы приписаны к Главному управлению глубоководных исследований (ГУГИ) Минобороны. ГУГИ к стратегическому оружию никакого отношения не имеет, а здесь речь идет о супероружии. О том, что на самом деле обе перспективные лодки должны будут войти в состав других структур ВМФ, свидетельствует масса косвенных свидетельств. Например, на закладке «Хабаровска» не присутствовал ни один представитель ГУГИ.

О тайном назначении лодок проектов 09851 и 09852 заговорили еще летом в 2015 года, когда главком ВМФ на форуме «Армия-2015» заявил, что в России уже строятся лодки пятого поколения. Поиски наиболее подходящих на эту роль и реализуемых кораблестроителями проектов и вывели на «Белгород» и «Хабаровск». Ну, а слайд МО, «случайно» угодивший на телеэкраны, подтвердил эти предположения.

По всей видимости, никакой случайности и оплошности в той «утечке информации» нет. Все продумано и сделано «на публику». Прежде всего, как представляется, на ту, что находится за океаном. Это сигнал, что Россия создает новый вид оружия сдерживания, наиболее скрытного, нейтрализация которого крайне маловероятна.

Вероятнее всего, что «рыцари плаща и кинжала» из Лэнгли к тому моменту уже имели общие представления о том, что в России активно разрабатывается «нечто крайне серьезное». При этом полагали, что это реанимация проекта торпеды Т-15, которая должна была доставлять к побережью США 100-мегатонный ядерный заряд.

Т-15 начали создавать в начале 60-х годов. Однако из-за отсутствия компактного ядерного реактора, который позволил бы обеспечить ход на нескольких сотен километров, проект закрыли. Электродвигатели на аккумуляторах позволяли доставлять 40-тонную махину длиной в 24 метра не далее чем на 30 километров. Тем самым подводная лодка, для выполнения боевого пуска должна была входить в зону массированной противолодочной обороны противника. Да и подрыв 100-мегатонного заряда на небольшом расстоянии от лодки сулил ей громадные неприятности.

По прошествии полувека проблема компактного ядерного реактора для двигательной установки сверхдальней торпеды была решена. Однако значительный прогресс за это время произошел не только в ядерной энергетике, но и в системах управления, и в электронных компонентах, и в материалах, и в прочих составных элементах торпедного оружия. Да и в стратегии и тактике ВМФ. Поэтому «Статус-6» — это абсолютно новая разработка, имеющая общего с Т-15 лишь рекордную дальность и мощность заряда.

Самое существенное отличие от нереализованного проекта «царь-торпеды» состоит в том, что данное оружие — не торпеда, а подводный робот -необитаемый подводный аппарат (НПА), обладающий компьютерным интеллектом и способный действовать самостоятельно на удалении в несколько тысяч километров от носителя. Т. е. от подводной лодки, его запустившей.

Сразу оговоримся: все технические параметры, которые мы будем приводить, основаны, разумеется, не на совершенно секретных документах КБ «Рубин». Они являются результатом расшифровки слайда Минобороны, анализа экспертов, как отечественных, так и зарубежных, учитывающего технические и технологические возможности ОПК России. А также анализа открытых документов, отражающих исполнение предприятиями НИР, ОКР и заказов на строительство подводных лодок, глубоководных аппаратов и входящих в их состав компонентов.

Даже эти неполные, но заслуживающие доверия данные дают впечатляющую картину того, какими возможностями обладает НПА, получивший название океанской многоцелевой системы «Статус-6».

Прежде всего, о мощности ядерного заряда. Тут самый широкий диапазон предположений — от 10 Мт до 100 Мт. Установить на НПА диаметром 1,6 м и длиной 24 м заряд, дело несложное. Но при этом все аналитики сходятся в том, что боеголовка может иметь кобальтовую секцию, что должно приводить к максимальному радиоактивному загрязнению громадной территории. Подсчитано, что при скорости ветра 26 км/ч долговременному заражению будет подвержен прямоугольник побережья размерами 1700×300 км. Собственно, оружие сдерживание и должно быть таким, мягко выражаясь, жестоким. Это гарантирует от попытки его использования, поскольку то же самое неизбежно «прилетит» и с другой стороны.

«Статус-6» способен уничтожать базы ВМС. Или авианосные ударные группы. США. Во время проведенных в 1946 году ВМС США испытаний «Перекресток» по подводному взрыву мощностью 23 кт в результате радиоактивного заражения был потерян совсем новый авианосец «Индепенденс», спущенный на воду в 1942 году. После четырех лет безуспешных попыток дезактивации он был затоплен. Боеголовка «Статуса-6» может содержать загрязняющих радиоактивных изотопов на несколько порядков больше.

В НПА  в качестве источника энергии для водометных движителей используется малогабаритный ядерный реактор на жидкометаллическом теплоносителе (1. Откуда информация?). Вырабатывая им мощность в 8 МВт позволяет НПА развивать максимальную скорость от 100 км/ч до 185 км/ч. При этом дальность, как у МБР — до 10 тыс. км. Кажущаяся фантастической скорость подводного хода тоже на сегодня вполне реальная. В конце 70-х годов у принятой на вооружение ВМФ РФ торпеды «Шквал» скорость достигала 375 км/ч. Правда, на «Шквале» реактивный двигатель.

Реактор на жидкометаллическом теплоносителе имеет два существенных достоинства по сравнению с традиционными для подводного флота водо-водяными. Во-первых, он обладает минимальным шумом (2. С чего бы это?) при высоком кпд. Во-вторых, имеет низкую удельную стоимость в расчете на киловатт мощности (3. Кто, как и где считал?). Подсчитано, что реактор для «Статуса-6» может стоить порядка 12 млн. долларов (4. Кто оценивал?).

При анализе прочности корпуса (5. Где и кто анализировал?) «Статуса-6» было установлено, что он имеет рабочую глубину порядка 1000 метров.

Что же касается малозаметности НПА для гидроакустической противолодочной системы США SOSSUS, то новый аппарат значительно тише, чем любая малошумная лодка. При этом предполагается, что на крейсерской скорости до 55 км/ч «Статус-6» можно будет обнаружить не дальше, чем на расстоянии в 2−3 км. В случае же обнаружения он с легкостью уйдет от любой торпеды противника на максимальной скорости. При этом выбор скоростного режима и маневрирование НПА будет осуществлять самостоятельно.

Шансы уничтожения «Статуса» у противника минимальные. Самая быстроходная торпеда США Mark 54 имеет скорость 74 км/ч. К тому же она неспособна погружаться на глубину в 1000 м, на которой будет идти к цели «Статус-6». А глубоководная евроторпеда MU90 Hard Kill, пущенная вдогон, на максимальной скорости в 90 км/ч способна пройти не более 10 км.

Оценивая возможности системы «Статус-6» (6. По каким данным, кто оценивал? Где?), следует учитывать, что это не просто очень «мускулистая» торпеда, но и робот, имеющий неплохие «мозги». В качестве оружия сдерживания, торпеда может прийти в точку назначения и залечь на дно, дожидаясь сигнала на подрыв боевой части. Сигнал, естественно, может подаваться по длинноволновому каналу, поскольку длинные волны проникают в толщу воды (7. Проникают, и что? На 1000 метров? Серьезно?). В этом случае мы будем иметь оружие сдерживания со стопроцентной гарантией срабатывания.

Вероятно, что «утечка информации» в ноябре прошлого года была строго дозированной. Ее объем и содержание предназначались для того, чтобы ВВП понял, что к России необходимо относиться с позиции разума, а не эмоций и амбиций. Круг задач у подводного робота может (и должен) быть несколько шире. Среди них, могут быть, например, разведывательные функции с возвращением дрона на материнскую лодку пятого поколения.

Отчет КБ «Рубин-Север» продемонстрировал, что носителями системы «Статус-6» в обозримом будущем будут уже не две, а три ПЛА СН пятого поколения.

 

По материалам: http://svpressa.ru/war21/article/152608/

(Текст в доработке)

ПЛА БС-64 «Подмосковье»:

Атомная подводная лодка-носитель атомных глубоководных станций. По причине малой скорости хода станций, она доставляет их до места проведения специальной операции, после чего они отстыковываются и уходят на необходимую для их работы большую глубину (см. материал 75).

ПЛА БС-64 «Подмосковье» построена по проекту 667БДРМ (Delta — IV). Заложена в декабре 1982 года на Северодвинском «Севмаше», а спущена на воду в марте 1984 года и через два года принята в состав флота.

«Подмосковье» более десяти раз выполняла автономные походы с первым и вторым (по отдельности) экипажами. В 1999 году поступил приказ о переходе лодки в Северодвинск на средний ремонт, на переоборудование в носитель атомных глубоководных аппаратов по проекту 09787.

Во время переоборудования у подводной лодки вырезали ракетные отсеки и на их место поставили отсек с жилыми (научными) помещениями и оборудованием для стыковки атомных глубоководных станций. За счет вставки нового отсека длина подлодки возросла. Новый отсек позволяет подводной лодке совершать длительные переходы с носимой атомной глубоководной станцией, а также проводить операции по стыковке и отстыковке станции. Также в нем расположены комфортабельный отсек для экипажа гидронавтов станции и научно-исследовательская часть. Предположительно, помимо носимой АГС, на субмарине будет находиться автономный необитаемый аппарат «Клавесин-1Р». Он значится в планах закупок конструкторского бюро «Рубин».

По состоянию на 2015 год, лодку готовят к выводу из главного стапельного цеха предприятия с последующим спуском на воду для достроечных работ и швартовных, ходовых, государственных испытаний. Во время выходов в море на ходовые и государственные испытания «Подмосковье», предположительно, будет взаимодействовать с атомными глубоководными станциями проектов 1910 «Кашалот», 1851 «Палтус» и 10831 «Лошарик».

ПЛА “Оренбург”: К-129 или БС -129

Атомная подводная лодка-носитель атомных глубоководных станций. Атомный подводный крейсер К-129 был заложен в апреле 1979 года на Северодвинском машиностроительном предприятии по проекту 667БДР (Delta III), спущен на воду в апреле 1981 года, и в том же году вступил в строй.

За годы своей службы в качестве стратегического крейсера он успел попасть в аварийную ситуацию у берегов Земли Франца-Иосифа, где на глубине 97 метров столкнулся с льдом, после чего провалился на глубину почти двести метров. В результате столкновения были повреждены выдвижные устройства и помято их ограждение (рубка). Каждый год крейсер выходил на боевые службы с первым и вторым экипажами.

С августа по сентябрь 1985 года К-129 участвовал в большом арктическом походе вместе с подводной лодкой К-218 (проект 671РТМ). В районе Северного полюса субмарины всплыли в полынье, которую К-129 проделал двумя торпедами, после чего произвел пуск двух баллистических ракет. В 1989 году на подлодке произошла авария главной энергетической установки, в результате которой ее отправили в Северодвинск для восстановительного ремонта на предприятии «Звездочка».

Во время ремонта К-129 перевели в класс атомных подводных крейсеров специального назначения, после чего приступили к переоборудованию по проекту 09786 в носитель атомных глубоководных станций. На время ремонта у крейсера поменялся тактический номер, он стал КС-129. Во время переоборудования у подводной лодки вырезали ракетные отсеки и на их место поставили отсек с научными помещениями и оборудованием для стыковки и отстыковки атомных глубоководных станций.

Модернизация закончилась в декабре 2002 года. После чего у подводной лодки в очередной раз сменили тактический номер на БС-129 и добавили имя «Оренбург», которое перешло ей от предыдущего носителя глубоководных аппаратов.

С 2003 по 2007 года подлодка проходила швартовные, заводские, государственные и глубоководные испытания. Примерно в 2006 году произошло ее первое взаимодействие с новейшей (на то время) атомной глубоководной станцией проекта 10831 «Лошарик», который тоже проходил государственные испытания. БС-129 «Оренбург» также способна носить под собой атомные станции других проектов.

После доработок, произведенных по завершении испытаний в 2011 году, «Оренбург» был принят в состав флота. БС-129 находилась на предприятии «Звездочка», где проходила ее доработка. В 2012 году состоялось принятие ее в состав флота.

1544317_887946904601936_168827571787551027_n

В сентябре 2012 года появились первые качественные фотографии БС-129, сделанные во время исследовательской экспедиции «Арктика-2012». Главной целью похода была доставка атомной глубоководной станции АС-12 проекта 10831 «Лошарик» для сбора данных, которые будут предъявлены в комиссию ООН по морскому праву с заявкой на расширение подконтрольной России арктической зоны.

В течение 20 суток АС-12 осуществлял сбор породы и грунта на глубине 2500–3000 метров и доставлял их на БС-129. В экспедиции участвовал Архангельский ледокол «Диксон» и Мурманский «Капитан Драницын». На сегодняшний день подводная лодка проходит службу в составе Военно-морского флота и базируется в губе Оленьей.

Источник: “Военный обозреватель”

(Текст в доработке)

Большая атомная подводная лодка специального назначения пр. 664

 

Вступление в строй первой советской атомной подводной лодки пр. 627 продемонстрировало большие преимущества, которые для решения самых разнообразных задач давало внедрение на ПЛ ядерной энергетики. В частности, это относилось к возможностям ведения минной войны на море, расширявшим зоны, скрытность и оперативность применения минного оружия в самых удаленных районах Мирового океана.

Нужно сказать, что в это время ЦКБ-16 Министерства судостроительной промышленности СССР разработало технический проект дизель-электрической транспортно-десантной подлодки-минзага пр. 648, предусматривавший возможность установки на такой ПЛ (пр. 648М) малогабаритной вспомогательной атомной энергетической установки (ВАУ). Поэтому при формировании кораблестроительной программы на семилетку (1959 – 1965 гг.), одновременно со строительством подводной лодки пр. 648, запланировали и разработку аналогичной ей по боевому предназначению ПЛА пр. 664. Правда, позднее постановлением ЦК КПСС и Совмина СССР от 21 июня 1961 г. работы по созданию дизельной субмарины пр. 648 были прекращены.

Учитывая предыдущие разработки, в августе 1959 г. Главное управление кораблестроения ВМФ направило в ЦКБ-16 на согласование проект тактико-технического задания на большую транспортную атомную подводную лодку – минный заградитель. Ее боевое предназначение практически было таким же, как и у дизель-электрической субмарины пр. 648: обеспечение подводных лодок, действующих на океанских и морских коммуникациях крылатыми ракетами и торпедами, горюче-смазочными материалами и иными средствами снабжения; гидросамолетов в море – авиационным топливом; транспортировка десантных подразделений со стрелковым вооружением и грузов в отдаленные районы или перевозка раненых; постановка минных заграждений.

Руководителем работ над пр. 664 в бюро был назначен главный конструктор Н.А. Киселев, занимавшийся и лодкой пр. 648, а ведущим конструктором – его однофамилец В.Н. Киселев, тоже работавший над данной тематикой. Группа Н.А. Киселева выполнила проработки по проекту ТТЗ за два месяца, и ее предложения еще четыре месяца рассматривались и согласовывались в различных инстанциях ВМФ, Сухопутных войск и ВВС, поскольку в них затрагивались интересы различных видов Вооруженных Сил. Наконец, 1 марта 1960 г. техническое задание на разработку ПЛА пр. 664 было утверждено Министром обороны.

Тем временем работа в ЦКБ-16 шла своим чередом, и в установленный срок, в сентябре того же года, эскизный проект нового корабля был представлен на рассмотрение и утверждение в Минсудпром и ВМФ. Он содержал четыре варианта, отличавшиеся друг от друга рядом конструктивных решений и расположением перевозимых грузов.

В первых трех вариантах прочный корпус лодки предлагалось выполнить в форме цилиндра, а в четвертом – в комбинации из трех сопряженных между собой и горизонтально расположенных цилиндров, так называемой “двойной восьмерки”, что значительно сокращало длину корабля, но увеличивало его ширину. Для транспортируемого вооружения в первом, втором и четвертом вариантах на ПЛА отводились два отсека, в третьем варианте – один отсек, что позволяло существенно уменьшить водоизмещение корабля за счет применения одной линии погрузки-выгрузки, но значительно увеличивало время перегрузки в море. Кроме того, в связи со сложностью транспортировки авиатоплива в межбортном пространстве, во втором варианте планировалось помещать его внутри прочного корпуса. При этом руководство бюро и главный конструктор предлагали дальнейшее проектирование вести по первому варианту, а также отказаться от требования по снабжению топливом гидросамолетов в море, поскольку такая операция могла осуществляться лишь с помощью вспомогательного самоходного плавсредства, разместить которое на лодке, и обеспечить его спуск на воду и подъем, было крайне сложно.

Совместным решением Минсудпрома и ВМФ от 26 ноября 1960 года был одобрен первый вариант эскизного проекта. Этим же документом бюро поручалось до февраля 1961 года выполнить “нулевой этап” технического проекта, чтобы окончательно оценить возможность реализации ряда высказанных по эскизному проекту замечаний. В представленных в феврале материалах было увеличено количество перевозимых крылатых ракет до 20 шт, торпед – до 80 шт., топлива на 650 т, численность транспортируемого десанта – до 350 человек, при автономности подводной лодки 30 суток, и до 500 человек при автономности 5 суток – заявленное в эскизном проекте водоизмещение практически не изменилось. Правда, пожелание флота о сокращении времени перегрузки ракет на боевые подлодки реализовать не удалось.

Screen Shot 2016-07-12 at 4.41.14 PM

 

Подготовленные материалы вновь рассматривались четыре месяца, и 3 июля 1961 года было принято очередное совместное решение, уточнявшее отдельные требования ТТЗ при разработке окончательного технического проекта корабля. Одновременно были определены дополнительные исполнители контрагентских работ, связанных с отработкой передачи топлива с подлодки на подлодку на ходу и, крылатых ракет с надводных кораблей на субмарину, а также проведение опытно-конструкторских работ по созданию действующего натурного стенда минно-сбрасывающего устройства. В результате к концу 1961 г. общая техническая готовность всех данных работ составила 60%.

В декабре того же года основные материалы технического проекта были готовы и согласованы с главным наблюдающим от 1 ЦНИИ МО. В своем заключении главный конструктор и руководство бюро, в частности, отмечали, что результаты разработки “не полностью соответствуют требованиям тактико-технического задания Министерства обороны”, и что отступления от них объясняются “результатом установки нового ГТЗА, принятием требований ВМФ о резервных средствах движения и прочих требований”, а также “уточнением состава и габаритных размеров оборудования в процессе его создания”. Конечно, совмещение выполнения одним кораблем транспортных, десантных и минно-заградительных задач без значительного увеличения его водоизмещения весьма усложняло проект и ухудшало некоторые характеристики ПЛА, уже утвержденные при рассмотрении эскизного проекта и “нулевого этапа”. Тем не менее в заключении говорилось, что “представленный проект транспортной ПЛ – минного заградителя с АЭУ пр. 664 удовлетворяет большинству требований ТТЗ, выданного Минобороны. Корабль, построенный по этому проекту, будет соответствовать заданному назначению и будет способен решать поставленные перед ним задачи”.

Решением от 19 апреля 1962 года технический пр. 664 был одобрен, но появились и новые замечания, которые проектанту следовало учесть до утверждения основных элементов атомной подводной лодки в Правительстве. Это потребовало определенной корректировки техпроекта, выполнив которую, ЦКБ в июле того же года представило все документы Госкомитету Совмина СССР по судостроению и Военно-Морскому Флоту.

Их утверждение соответствующим постановлением Совмин СССР состоялось лишь 24 декабря 1962 года. Однако, не дожидаясь его, на Северодвинский судостроительный завод № 402 бюро направило специальную группу технической помощи для подготовки производства, а также плазовую документацию. Нужно сказать, что корабль имел очень сложные обводы, а потому большую помощь в разбивке плаза корабля работникам завода оказывал ведущий специалист бюро по плазовой документации Н.Ф. Грачев. В том же году этот завод изготовил три натурных макета размещения оборудования в помещениях холодильных машин, саншлюзе и выдвижных устройств на верхней и средней палубах, которые были приняты комиссией из представителей проектанта, завода-строителя, 1 ЦНИИ МО, контрольно-приемного аппарата Главного управления кораблестроения ВМФ. Однако затем, ввиду отсутствия места, а также высокой стоимости работ, руководство завода предложило натурные макеты насыщения турбинного и турбогенераторного отсеков заменить на масштабные (в соотношении 1:5), и оформило решение, согласно которому изготовление первого поручалось мастерской ЦКБ-16, а второго – мастерской ЦНИИ-138.

С утверждением техпроекта график поставки рабочих чертежей предусматривал окончание выпуска рабочей документации в июне 1964 г., причем полностью обеспечить завод чертежами по корпусной части должны были до конца 1963 г., и в тот же срок выдано 75% чертежей по остальным частям корабля. Заметим, что к концу 1962 г. предприятия-контрагенты выполнили 20 работ, а в следующем году еще 61 работу. Был разбит плаз, отработана технологическая документация на корпусные работы и заказан металл для прочного и легкого корпуса ПЛА. Большая работа велась также по созданию нового комплектующего оборудования. Так, под руководством специалистов бюро продолжились отработки опытных тем, начатых еще под пр. 648 (устройства передачи топлива, а также испытания по перегрузке крылатых ракет и торпед на лодки в море и минно-сбрасывающего устройства – МСУ).

Для этого по чертежам ЦКБ-16 на северодвинском судостроительном заводе № 402 изготовили и поставили на мурманский судоремонтный завод №35 ВМФ изделия для переоборудования дизельной подлодки пр. 611 и дооборудования ПЛ пр. 613 устройствами передачи-приема топлива на ходу. Это оборудование смонтировали на выделенных лодках, и в конце 1964 года комиссия, назначенная приказом Командующего СФ, произвела испытания данной системы, в ходе которых осуществлялась передача дизельного топлива на ходу в надводном и подводном положениях с ПЛ Б-82 (пр. 611) на ПЛ С-346(пр. 613). По результатам испытаний в сложных погодных условиях зимнего Баренцева моря, комиссия в декабре подписала акт с рекомендациями о внедрении системы на транспортно-десантную ПЛА-минзаг пр. 664. Большой вклад в успешное завершение темы внес ее руководитель – ведущий специалист ЦКБ-16 Б.Н. Майзель.

Отработка конструкций по обеспечению передачи боезапаса в море первоначально планировалась путем переоборудования одного из эсминцев. Однако ССЗ № 402 представил обоснованную мотивировку своего отказа от выполнения данных работ. Тогда в 1964 году ее передали СРЗ-82 ВМФ, который занимался дооборудованием для этой цели серийной подводной лодки пр. 611, причем вместо эсминца для отработки устройств перегрузки боезапаса выделили транспорт вспомогательного флота “Хопер”. Этим заводом в следующем году на транспорте был установлен и сдан в эксплуатацию специальный, снабженный следящей за волной системой кран, изготовленный на Хабаровском машиностроительном заводе. Все работы по созданию этого оригинального и сложного механизма курировал ведущий конструктор ЦКБ-16 В.М. Ланговой.

Для отработки же конструкции минно-сбрасывающего устройства на ССЗ № 402 по чертежам бюро был изготовлен специальный натурный наземный стенд, правда, с опозданием от графика более чем на полгода. На нем в течение 1965 г. межведомственная комиссия, в состав которой входили и разработчики МСУ (начальник отдела ЦКБ-16 Н.П. Седунов и ведущий конструктор В.Г. Марков), провела обширные испытания, отсняв на пленку процесс выхода из трубы МСУ мин всех типов, предусмотренных спецификацией. Итоговый акт комиссии подтверждал полную работоспособность устройства и давал основание рекомендовать его установку на подводный минзаг.

Во второй половине 1964 года ЦКБ-16 приступило к разработке эксплуатационной документации – описаний и инструкций. Было завершено изготовление еще двух натурных и четырех масштабных макетов помещений ПЛА, продолжались работы по созданию нового оборудования. К сожалению, нарастало отставание: из намеченных по плану на 1964 год из 89 контрагентских работ было выполнено 63, а из запланированных 48 техусловий на поставку комплектующего оборудования и материалов утверждено 29. Отмечавшаяся выше большая сложность проекта, обусловленная его тройным назначением, задерживала и выпуск рабочих чертежей, что заняло весь 1964 год. Их объем был значителен, и всего выпустили 12913 рабочих чертежей и 36335 страниц текста спецификаций. Для сравнения стоит отметить, что это было примерно в 1,5 раза больше, чем при строительстве, например, ПЛА пр. 661 (см. материал …).

В это время ССЗ № 402 приступил к реализации весьма приоритетного плана строительства серии принципиально нового проекта атомных подводных лодок, вооруженных баллистическими ракетами. И начатые заводом обработка металла, и сварка секций прочного и легкого корпуса ПЛА пр 664, были внезапно прекращены, а в мае 1965 г. директор предприятия Е.П. Егоров обратился в Минсудпром с предложением о передаче строительства первой в мире ПЛА-минзага ленинградским заводам, обещая взамен построить две ПЛАРБ пр. 667А.

(Фото пр. 667А)

И хотя к этому времени данный завод уже выполнил на ПЛА пр. 664 (заводской заказ № 305) сварочные работы по формированию 600 т корпусных конструкций и обработал еще около 400 т металла, в июне произошло расторжение договора с поставщиками комплектующего оборудования и материалов для нее, а также с бюро-проектантом.

Руководство ЦКБ-16 обратилось с просьбами о пересмотре данного решения во все высокие московские инстанции, но не получило должной поддержки, так как на карте стояло “стратегическое равновесие” между СССР и США. Более года шла переписка и разбирательство. Бюро было вынуждено прекратить незавершенные опытные работы, но закончило разработку эксплуатационной документации. В конце концов, совместным решением ВМФ и МСП от 11 ноября 1966 г. работы по созданию большой атомной транспортно-десантной подводной лодки – минного заградителя пр. 664 были прекращены с целью освобождения мощностей предприятия для строительства ракетных подводных лодок. Коллектив Центрального проектного бюро “Волна” (такое имя получило ЦКБ-16 в 1966 г.) с большим сожалением воспринял прекращение работ по первой в мире транспортно-десантной ПЛА-минзагу, созданию которой, включая работы по пр. 632 и 632М, 648 и 648М, отдал восемь лет напряженного труда. Однако, как показало время, к теме подводных атомных транспортно-десантных ПЛА в нашей стране все же вернулись в процессе создания кораблей пр. 748 и 717, но это отдельный рассказ.

Большая атомная подводная лодка специального назначения пр. 664

 

Источники:
Гусев А. Подводные лодки специального назначения. СПб.: «Галерея Принт», 2002. С. 77-82
Ильин В., Колесников А. Большая транспортная ПЛА проекта 664. // Техника и Вооружение. 2000. №5-6. С.77-78.
Жарков В. Тюрин Б. Большая транспортная ПЛА-минзаг проекта 664. // Морской сборник. 1995. №7. С.66-69.
Ильин В., Колесников А. Подводные лодки России: Иллюстрированный справочник. М.: Астрель, 2002. С.274-275.
Широкорад А.Б. Советские подводные лодки послевоенной постройки М.: Арсенал-Пресс, 1997. С. 118-121.

По материалам сайта: topwar.ru от 16 мая 2016 года 

В Пентагоне рассекретили получение информации о российском проекте «Каньон», в рамках которого идут работы по созданию необитаемой подводной лодки, оснащенной ядерными боеголовками мощностью до 10 мегатонн. Американские военные заподозрили, что этот тип субмарин будет нацелен против военной инфраструктуры США.

Источники в Пентагоне, утверждающие, что имеют инсайдерскую информацию о новом российском проекте, рассказали о некоторых ключевых особенностях беспилотной субмарины. По их данным, проект «Каньон» подразумевает строительство автономных беспилотных подводных лодок, несущих ядерный боевой заряд мощностью до 10 мегатонн. Беспилотные подводные аппараты с установленными на них ядерными боевыми блоками огромной мощности можно будет удаленно использовать для уничтожения портов и других объектов военной инфраструктуры.

Теперь в потенциальной опасности находятся в том числе американские подземные объекты на побережье, где обычно базируются подводные лодки. Новое вооружение позволит нанести огромный ущерб противнику, уничтожая или повреждая объекты на большой площади. В Пентагоне опасаются, что также возрастет угроза для американских мегаполисов, которые расположены на океанском побережье.

 

НОВАЯ ПОДЛОДКА – ПРОЕКТ ОТДАЛЕННОГО БУДУЩЕГО

Директор Центра анализа стратегий и технологий Руслан Пухов подтвердил, что в настоящее время российская промышленность ведет огромное количество проектов и один фантастичнее другого: «Вполне вероятно, разработка необитаемой подводной лодки в России также ведется наряду со многими другими перспективными проектами. Но сказать об этом наверняка нельзя, эти работы засекречены, поэтому никакой подробной информации на сей счет в открытом доступе не существует.

При этом обращает на себя внимание то, как информацию о новой российской подлодке подают американцы: их послушаешь – так это вооружение появится чуть ли не зав­тра и станет смертельной угрозой для Америки. Конечно, это сильное преувеличение, больше это похоже на попытку американского военного лобби под предлогом российской военной угрозы выбить больше денег на покупку и разработку нового вооружения. Работы по созданию принципиально новых видов и типов вооружения – это долговременный процесс: до того момента, когда появится прототип, могут пройти годы и даже десятилетия.

В любом случае реальное создание автономного необитаемого мощного подводного аппарата, способного нести на себе ядерное оружие, – это вопрос даже не завтрашнего дня. Пока непонятно, выделят ли военные для реализации этого проекта деньги. Также открытым остается вопрос, до какой стадии будет доведен этот проект: останется на уровне опытной разработки, доведут его до стадии создания опытного образца или подлодка действительно будет принята на вооружение».

Несмотря на отсутствие каких-либо подтвержденных данных о новом проекте, о нем говорят как о чем-то состоявшемся. Скорее всего, этот феномен объясняется тем, что российский ВМФ и его предшественник, флот СССР, были новаторами в сфере подводных систем и оружия, в том числе подводных лодок и торпед. И всегда были в лидерах по созданию проектов экзотического оружия.

Так или иначе, но специалисты уже строят свои предположения на тему облика этого перспективного оружия. Понятно, что недостаток информации напрямую отражается на такой аналитике, тем не менее зарубежные специалисты пытаются составить мнение о новом необычном оружии и предугадать сферы его применения.

Подводные необитаемые аппараты, существующие и создаваемые в настоящее время в различных странах мира, в значительной степени несут информационную функцию, выступают в роли подводных разведчиков и весьма ограничены по своим возможностям. По сути, сегодня впервые зашла речь об оснащении беспилотного подводного аппарата боевой частью. Скорее всего, эти аппараты будут использованы для одноразового применения.

Подобный подход с созданием аппаратов-камикадзе уже применялся ранее в области беспилотных авиационных систем. Есть предположения о технических характеристиках подлодки: новый подводный беспилотник будет иметь высокую скорость и будет способен преодолевать дальние расстояния. Звучат мнения, что на торпеду планируется поставить малогабаритный ядерный реактор, и она сможет иметь практически неограниченную дальность хода.

Вице-президент Академии геополитических проблем, доктор военных наук, капитан первого ранга запаса Константин Сивков рассказал, что сегодня действительно сложно делать предположения по поводу новой подводной лодки: «О том, что ведутся работы по созданию подобной подводной лодки, официально ничего не говорится, поэтому строить предположение, какое это будет вооружение, сегодня достаточно сложно.

Из анализа открытой информации понятно, что в разработке находится малогабаритный необитаемый подводный аппарат: беспилотник будет способен действовать на большом удалении от границ России, в зонах, контролируемых противолодочными системами США.

Возможно, это будет торпеда с ядерной энергетической установкой, ядерной боевой частью. За счет малых габаритов и отсутствия экипажа на борту удастся эффективно решать противолодочные задачи различной степени сложности. Можно однозначно сказать, что американской системе противоракетной обороны эту цель будет весьма сложно обнаружить и уничтожить, поскольку старт такой торпеды будет производиться из подводного положения, из любой точки Мирового океана».

 

«КАНЬОН» БУДЕТ ОХОТИТЬСЯ ЗА АВИАНОСЦАМИ

На поверхности и гипотетические недостатки нового проекта. Если торпеда будет двигаться к цели по заданной программе слишком быстро, то она будет гарантированно обнаружена системой подводного наблюдения, после чего уничтожена. При этом тихоходная торпеда, которая сможет скрытно атаковать цель, не очень актуальна в современной динамичной войне. Но рассматривается и другой вариант применения этого оружия. Есть предположения, что этот необитаемый подводный аппарат может быть использован для уничтожения американских кораблей в отдаленном районе.

Не исключено, что подводный беспилотник проектируется и создается для борьбы с ударными авианосными группами потенциального противника. Ядерная силовая установка уберет ограничение по дальности, что позволит запускать аппарат прямо с российских берегов. Очевидно, что дальнодействующие средства – это, наверное, единственный способ, который поможет российскому ВМФ вести эффективную борьбу с внушительным американским флотом.

Российские военные и ОПК пока никак не реагируют на заявления о том, что ими ведется работа над созданием необитаемой подводной лодки. По всей видимости, их цель – поддержать интригу. Так что факт создания специального носителя ядерного оружия большой мощности не подтверждается и не опровергается. Таким образом, истинная суть нынешних обсуждений, скорее всего, не откроется в обозримой перспективе. Но в любом случае только официальные сведения о новых разработках помогут выяснить, имела ли новость о создании новой субмарины под собой почву или это попытка дезинформации с той или другой стороны.

 

РОССИЙСКИЙ ОПК РЕАНИМИРОВАЛ СОВЕТСКИЙ ПРОЕКТ ЯДЕРНОЙ ТОРПЕДЫ

Есть предположение, что в основе проекта «Каньон» могут лежать ранние советские разработки. Известно, что вскоре после освоения ядерных технологий советские специалисты начали разработку специальной торпеды, предназначенной для атаки побережья противника. Подобный проект был разработан в самый разгар холодной войны, когда на повестке дня стояло реальное применение ядерного оружия. Было предложено в качестве «средства доставки» использовать разрабатываемые атомные подводные лодки проекта 627, оснастив каждую из них гигантской торпедой под термоядерный 100-мегатонный заряд.

Однако руководство Военно-морского флота СССР выступило против этого совершенно неизбирательного оружия. Возможно, дальше торпеда создавалась без участия флота, во всяком случае бывший начальник Главного штаба ВМФ адмирал Валентин Селиванов рассказал, что за время службы ни разу не слышал о создании подобной торпеды.

Тем не менее проектные разработки были продолжены, проект получил шифр Т-15. Предполагалось создание крупной торпеды с ядерной боевой частью большой мощности. В 1954 году был создан эскизный, а затем и технический проект. Огромная торпеда, несущая тактическое ядерное оружие, весила 40 тонн, имела длину 23,55 метра и калибр 1550 мм. Однако вскоре работы над торпедой Т-15 были прекращены.

Даже в 1950-х годах противолодочная оборона ВМС США не пропустила бы подводную лодку в 50-километровую зону вокруг своей базы. Кроме того, входы во все американские базы за много километров закрывают извилистые берега заливов, острова, мели, а также боновые заграждения, стальные сети. Такие препятствия на пути к объекту торпеде Т-15 было невозможно преодолеть.

1357962556_1002050-pic_2

 

ЯДЕРНАЯ ТОРПЕДА ДОЛЖНА БЫЛА СПРОВОЦИРОВАТЬ ЦУНАМИ

В 1961 году было предложено внести инновацию в этот план. Предполагалась, что подлодка будет производить пуск торпеды вне действия систем подводного наблюдения США. Выработав запас аккумуляторов, торпеда ляжет на грунт и будет ожидать команды на дистанционный подрыв. Разрушение береговых объектов или морских баз планировалось достигать вызванным атомным взрывом цунами. Взорванные у океанских берегов США суперторпеды должны были вызвать волны высотой 300 метров, которые просто смыли бы американские города, нанеся США невосполнимый ущерб. Этот проект также был отвергнут, и вовсе не по соображениям гуманности. Советские гидрографы провели подсчеты, что рельеф американского побережья ослабит цунами и существенного ущерба подводный атомный взрыв не принесет.

Ряд экспертов считают, что разработки безэкипажной подводной лодки в дальнейшем были продолжены в Советском Союзе и России. Называют, в частности, секретный проект по теме «Скиф» в конце 1980-х годов. Специалисты говорят, что в этом проекте были использованы технологии, отработанные при создании торпеды Т-15. Возможно, именно этот проект стал прологом для создания программы «Каньон».

Главный редактор журнала «Арсенал Отечества», полковник запаса, военный эксперт Виктор Мураховский рассказал, что Россия строит необитаемые подводные аппараты. По его утверждению, это не секрет, однако конкретные названия этих опытно-конструкторских работ, их назначение и кто ими занимается, не разглашается: «Сегодня технологии в области беспилотных аппаратов шагнули далеко вперед.

Необитаемый аппарат может работать в автономном режиме, с заранее заложенным алгоритмом выполняет задачи, кроме того, дополнительно собирает данные с помощью сенсоров и самостоятельно вносит корректировки в программу. Также беспилотным аппаратом можно управлять дистанционно, сейчас существуют средства, в частности оптиковолоконные, которые позволяют управлять таким аппаратом на расстоянии нескольких десятков километров под водой».

 

В США ЗАЯВЛЯЮТ, ЧТО ПРОЕКТ МОЖЕТ ОКАЗАТЬСЯ ДЕЗИНФОРМАЦИЕЙ

Отмечается, что в настоящее время и США, и Россия в рамках развития своих военных флотов усиленно разрабатывают новые беспилотные системы. Сами американские военные неоднократно заявляли, что беспилотные технологии представляют огромный интерес для военных, в том числе имеют большой потенциал на флоте. Прогнозируется, что в будущем должно появиться большое количество проектов беспилотной техники, в том числе подводных аппаратов, которые станут неотъемлемой частью флота.

Неслучайно в апреле этого года министр ВМС США Рэй Мэйбус заявил, что беспилотные системы являются одним из приоритетных направлений в развитии американских ВМС.

При этом достоверно известно, что американская оборонная промышленность пока не занимается созданием подводных систем с ядерными боевыми блоками. Но вполне вероятно, что США уже в ближайшее время ответит на гипотетический российский проект своими новыми разработками. При этом американские эксперты утверждают, что проект «Каньон» еще долгое время не будет представлять опасность для США, поскольку на завершение разработки проекта и испытания прототипов нового подводного аппарата уйдут годы, а то и десятилетия.

Американцы уверяют, что понимают: имеющиеся сведения о новом российском проекте беспилотного подводного аппарата с ядерной боевой частью могут не соответствовать действительности. Тем не менее считают, что к этим перспективным разработкам необходимо относиться максимально серьезно. Поскольку, если упустить развитие этой технологии, то в дальнейшем это может иметь серьезные последствия для обороноспособности.

 

СПРАВКА

Денис Федутинов, эксперт по беспилотным аппаратам, главный редактор профильного интернет-портала UAV.RU:

«Работами в области подводных необитаемых аппаратов занимаются во многих странах, имеющих собственный военно-морской флот и обладающих развитой научно-исследовательской и промышленной базой. В основном это относительно небольшие аппараты, которые главным образом имеют информационную функцию. Но в случае с гипотетической российской необитаемой подводной лодкой речь все же идет о принципиально отличной вещи – о некоем аппарате с оружием на борту. При крайне ограниченной доступной информации по данной теме можно лишь делать предположения о том, что это может быть.

Мне кажется, достаточно реалистичным выглядит предположение о том, что этот аппарат будет размещаться в заданном районе и находиться там в режиме ожидания. В части оснащения этого аппарата можно предполагать различные варианты. К примеру, на его борту может размещаться боезаряд, и аппарат фактически будет представлять собой торпеду, возможно, высокоскоростную. Существует также возможность, что этот аппарат будет нести ракету крылатую или баллистическую.

Конечно, имеется достаточный простор для развития идеи применения необитаемых аппаратов. Думаю, сбор данных будет доминировать среди прочих задач. Впрочем, оснащение подобных аппаратов оружием также представляет собой одно из перспективных направлений в эволюции беспилотных систем. Что же касается размещения ядерных боевых частей на этого рода аппаратах, то на настоящий момент это выглядит достаточно рискованно».

 

 

Автор первоисточника Александр Круглов. По материалу опубликованному на сайте “Совершенно секретно” :http://www.sovsekretno.ru/articles/id/5065/?fb_action_ids=880623565308605&fb_action_types=og.recommends&fb_ref=.VhrTuC-euGw.like

 

«Росатом» поставит на поток строительство ПАЭС

 

Фото: Александр Чиженок / «Коммерсантъ»

Госкорпорация «Росатом» до конца года намерена произвести испытания приемопередающего оборудования плавучей атомной тепоэлектростанции (ПАТЭС «Академик Ломоносов», а в сентябре начать обучение первых членов экипажа. Полностью объект планируют сдать до 2019 года, после чего ПАТЭС отбуксируют в порт Певек на Чукотке для замены выработавшей свой ресурс Билибинской АЭС. Успешная реализация этого проекта позволит обкатать технологию создания компактных атомных энергоблоков «конвейерной сборки» для различных целей — от выработки электричества до опреснения воды — и вдвое снизить ее стоимость. На прошлой неделе журналисты впервые побывали на ПАТЭС, которая строится на мощностях Балтийского завода в Петербурге.

Роль экскурсовода по плавучей атомной электростанции взял на себя главный строитель ПАТЭС «Академик Ломоносов» Александр Ковалев. Со всех сторон нас окружают провода и оборудование непонятного назначения, а операторы с камерами толпятся в узком коридоре, гуськом пересекая переборки между отсеками.

«Здесь у нас будет спортзал, там бассейн, дальше каюты», — показывает Ковалев. Пока трудно представить все это великолепие, лавируя между свисающих кабелей по бесконечным узким лестницам и коридорам станции. Самое большое помещение на плавучей энергоустановке — отсек для перегрузки отработанного ядерного топлива. «Если вы посмотрите налево и направо — это как раз помещения свежего топлива», — объясняет Ковалев. В помещении под нами будут расположены два ядерных реактора, а по левому и правому бортам внизу — хранилища отработанного топлива. Экипаж первой плавучей АЭС будет состоять из 78 человек, для каждого из которых предусмотрены одноместные каюты. На нижних палубах есть и двухместные — для гостей.

Заложенная еще в 2006 году ПАТЭС «Академик Ломоносов» — головной проект «Росатома» по созданию серии мобильных транспортабельных энергоблоков малой мощности. С 2009 года плавучая станция строится по заказу госкорпорации на Балтийском заводе (входит в Объединенную судостроительную корпорацию) в Санкт-Петербурге, до этого проектом занимался «Севмаш». Активная фаза стройки, по словам представителей «Росатома», ведется около трех с половиной лет: сооружение ПАТЭС на несколько лет приостанавливалось по независящим от атомщиков причинам, на фоне банкротства Межпромбанка Сергея Пугачева (Балтзавод перешел под контроль ОСК в 2011 году).

Фото: Волобуев Александр / «Лента.ру»

 

«Академик Ломоносов» — это мобильная атомная теплоэлектростанция электрической мощностью более 70 мегаватт, включающая две реакторные установки КЛТ-40С. ПАТЭС сооружается на основе серийной энергоустановки атомных ледоколов, эксплуатирующихся в Арктике, но в отличие от них не является самоходной — ее нужно буксировать по воде к пункту назначения. Там ПАТЭС подключается к береговой инфраструктуре, чтобы обеспечивать населенные пункты электроэнергией и теплом. Плавучий энергоблок предназначен для энергообеспечения портовых городов, крупных промышленных предприятий и комплексов по добыче нефти и газа на морском шельфе.

В «Росатоме» считают, что в России использование атомной энергии наиболее актуально для обеспечения теплом и энергией отдаленных районов Севера (такие районы и приравненные к ним занимают около 50 процентов территории РФ с населением 20 миллионов человек). «Единая энергетическая система России охватывает лишь 15 процентов территории страны, поэтому северные регионы находятся в зоне децентрализованного энергоснабжения, где преобладают маломощные энергетические источники на привозном органическом топливе», — отмечают в «Росатоме». Первая российская ПАТЭС как раз и рассчитана на работу в условиях Крайнего Севера и Дальнего Востока. Аналогичные установки при соответствующей «доводке» могут использоваться и в других энергодефицитных регионах — хоть в Крыму, говорит Ковалев. В конструкцию «Академика Ломоносова» глобальные изменения вноситься не будут, но последующие плавучие АЭС смогут приспособить практически к любым климатическим условиям и запросам заказчика. На международном рынке, например, наверняка будет востребовано дополнительное опреснительное оборудование.

«Академик Ломоносов» должен пришвартоваться в порту Певек на Чукотке в 2019 году и к 2021-му выйти на полную мощность, заменив Билибинскую АЭС, которую к этому сроку выведут из эксплуатации. ПАЭС рассчитана на 40 лет эксплуатации, но каждые 10-12 лет ей необходим плановый ремонт длительностью около года. Это означает, что источник электричества и тепла в порту Певек до 2030-го придется заменять второй ПАТЭС со схожими характеристиками.

 

«Станция способна обеспечить функционирование энергоизолированных регионов и потребителей в этих районах и создать им качественно иные условия жизни. ПАТЭС представляет собой абсолютно независимый энергогенерирующий блок, который можно перемещать в любую точку планеты», — рассказывает руководитель филиала «Росэнергоатома» — дирекции по сооружению ПАТЭС Сергей Завьялов. По его словам, мощность ПАТЭС «Академик Ломоносов» позволит поддерживать жизнеобеспечение населенного пункта до 100 тысяч человек. Степень готовности энергоблока плавучей АЭС он оценивает «до 70 процентов», что соответствует плановым срокам строительства. Завьялов отмечает, что на достройку ПАТЭС нужно еще полтора-два года, у строителей есть время до планового 2019-го.

На следующем этапе, рассказывает Завьялов, пройдут испытания всех приемопередающих устройств станции: «Нам необходимо обеспечить не только жесткую швартовку [судна], но и динамические перемещения, связанные с изменениями уровня моря, ледовыми и ветровыми нагрузками». Топ-менеджер «Росэнергоатома» подчеркнул, что 2015-2016 годы являются ключевыми с точки зрения сроков ввода ПАТЭС в эксплуатацию: до конца декабря планируют отработать технологии передачи электричества на берег и провести подготовку к швартовым испытаниям. Точные сроки швартовных испытаний он назвать затруднился.

Разработчики рассчитывают, что помимо российского Крайнего Севера ПАТЭС будут востребованы и за рубежом: прежде всего в островных государствах и в развивающихся странах, испытывающих нехватку энергоресурсов.

Новым мобильным источником электроэнергии интересуются китайцы. Летом 2014 года китайская CNNC New Energy и «Русатом оверсиз» (дочерняя структура «Росатома») создали рабочую группу по организации совместного предприятия для создания плавучих АЭС. Завьялов подтвердил, что переговоры о сотрудничестве России и КНР в области сооружения плавучих атомных станций идут успешно и «скорее рано, чем поздно» перейдут в практическую плоскость. По его словам, речь идет прежде всего о кооперации в судостроении, поскольку китайцы «весьма преуспели» в создании крупнотоннажных судов. «Верфи в Китае мощные, высокотехнологичные, а руководство страны поддерживает судостроителей серьезнейшим образом», — пояснил он. При этом российская сторона намерена сохранить ведущую роль в производстве атомной энергоустановки, располагая в этой области исключительными знаниями и уникальными технологиями.

 

Но чтобы ПАТЭС/ПАЭС захотели покупать третьи страны, нужно довести ПАЭС “до ума”, запустить ее, протестировать и значительно снизить стоимость, сделав ее серийной. Завьялов обращает внимание на то, что использовать новую модель ПАЭС можно не только для выработки тепла и электричества, но и для опреснения воды (по прогнозам ЮНЕСКО к 2050 году с проблемой нехватки пресной воды могут столкнуться от 2 до 7 миллиардов человек). Это может еще больше расширить рынок потенциальных заказчиков.

В дальнейшем создатели планируют оптимизировать размеры и функциональность станций: например, ограничиться только выработкой электроэнергии (это может быть сделано уже при строительстве второй ПАТЭС для чукотского порта Певек). Такой подход, считает Завьялов, позволит снизить стоимость плавучих АЭС вдвое (стоимость первой ПАТЭС составляет около 20 миллиардов рублей), а также на 40 процентов сократить сроки строительства. Плавучая станция «Академик Ломоносов» станет своеобразным полигоном для отработки технологий и взаимодействия с энергосетевыми компаниями, что позволит поставить производство ПАТЭС на поток. «В дальнейшем мы можем оптимизировать технические решения: создавать объекты в разы меньшие по водоизмещению, отказываться от ряда функций, таких как хранилище отработанного топлива, перегрузочного оборудования, жилой модуль для экипажа», — поясняет Завьялов. Это, по замыслу разработчиков, позволит создавать компактные максимально автоматизированные плавучие АЭС «конвейерной сборки» с более мощными и современными реакторными установками (РИТМ-200 и ВБР), способными выдавать от 200 до 500 мегаватт. Эскизные разработки таких плавучих станций уже есть, добавил Завьялов. Снизить стоимость можно и за счет отказа от выработки тепла — новые ПАТЭС могут вырабатывать только электричество.

Тренировки первых 17 человек, которые составят команду специалистов для «Академика Ломоносова», начнутся уже в сентябре и займут около двух лет. Для этого в Центральном институте повышения квалификации «Росатома» создана точная копия центрального пункта управления ПАТЭС, где моделируются и отрабатываются различные нештатные ситуации. Команда управления пунктом состоит из пяти человек во главе с главным инженером. У ПАТЭС будет также свой директор. Капитан же будет отвечать лишь за вопросы судовой безопасности.

 

Источник: http://lenta.ru/articles/2015/08/25/rosatom_pates/

… не определен. В файле автор обозначен фамилией и инициалами Жизневский С.Д., но с уверенностью говорить об авторстве и месте первой публикации сложно. Но по времени написания, это 2008 год. Однако, статья заслуживает внимания. Рисунки и схемы будут размещены дополнительно. Кое-какие редакторские правки по тексту были выполнены для придания статье “читабельности”.

 

Введение:

Как показывают события в мировой экономике в 2008 году, ориентация на масштабное развитие ядерной энергетики (ЯЭ) в России оказывается точным и вполне своевременным выбором. Последние события показывают правильность этого решения в долгосрочном, стратегическом контексте. Ситуация в развитии мировой экономики во второй половине 2008 года наглядно продемонстрировала, что оно может быть устойчивым только при надежном и относительно дешевом обеспечении энергией. В таком контексте масштабное развитие ЯЭ с учетом условий, сформировавшихся на энергетическом рынке к настоящему времени, оказывается практически безальтернативным вариантом.

На первый взгляд финансовый кризис, поразивший экономику планеты в 2008 году, является исключительно порождением несовершенства современной финансовой системы и не имеет причин в сфере материальной деятельности людей. Несомненно, глобальный финансовый сбой породил массу проблем, перекинулся на реальную экономику, и без устранения причин сбоя трудно рассчитывать на восстановление нормальной жизни.

При изучении перспектив развития энергетики, ее взаимосвязь с экономикой важна наряду с множеством параметров, отражающих разные стороны процесса оценки доли затрат на энергообеспечение экономической деятельности. Добывая и потребляя энергию, прилагая усилия и привлекая таланты, люди производят продукты конечного потребления и услуги, совокупная стоимость которых и составляет глобальный ВВП. Параметр, на который важно обратить внимание, – относительные затраты на обеспечение экономики энергией. Если доля затрат на энергию увеличивается, в перспективе это может привести к тому, что затраты на обеспечение энергией могут оказаться непомерными, а поведение экономической системы станет неустойчивым.

Анализ показывает, что если бы гипотетически вся современная энергетика базировалась на атомной энергии, даже с учетом большой ее инвестиционной составляющей, доля затрат на обеспечение экономики энергией не превышала бы 6% [1] глобального ВВП. Атомная энергетика – это восприимчивый к высоким технологиям, экологичный способ энергопроизводства с большой долей интеллектуальных вложений.

В условиях обостряющегося энергодефицита и роста стоимости традиционных энергоресурсов возрастает экономическая привлекательность использования в отдельных районах атомных станций малой мощности (АСММ). Во многих регионах России и мира проявляется необходимость в малых самозащищенных энергоисточниках, устойчивых к внешним воздействиям, с длительной автономностью (это понятие, в первую очередь, включает надежную и долговременную топливообеспеченность – длительную независимость от поставок топлива) для решения многих социальных и экономических проблем.

Согласно классификации МАГАТЭ [2]:

  • атомные реакторы малой мощности – реакторы, не превышающие 300 МВт (э),
  • средней – от 300 до 700 МВт (э)
  • большой – более 700 МВт (э).

Изначально, реакторы малой мощности, в основном использовались в качестве источника энергии для подводных лодок. Гражданская атомная энергетика строилась на опыте военной, и АЭС построенные в 1960-70 гг. были, как раз, средней мощности. Однако, начиная с 70-х гг., индустриально развитые страны сделали упор на строительство АЭС с мощностями от 600 – 1000 МВт. Такой путь возможен именно в индустриально и научно успешных странах, так как они имеют развитые электрические сети, квалифицированный персонал, технологии, растущий потенциал потребления энергии и средства на реализацию дорогостоящих проектов. Однако, большинство развивающихся стран не имеют достаточно развитой инфраструктуры, сети электропередач, достаточной плотности населения и средств на большие амбициозные проекты. В их случае, строить крупную электростанцию в одном месте – не лучший вариант развития энергетики на данном этапе.  Это будет еще менее эффективно, если атомная энергия используется не только для получения электричества, а, к примеру, для центрального отопления.

Необходимость внедрения АСММ понятна многим экспертам и даже политикам. Но внедрение это должно быть сделано разумно, на основе системного подхода. Только рациональное использование наличных ресурсов приведет к успешной интеграции АСММ в систему национальной энергетической безопасности. ЯЭ как качественно новая энерготехнология, основанная на использовании топлива с принципиально более высокой энергоотдачей, чем все известные органические виды топлива, должна развиваться далее по новым принципам и законам. ЯЭ должна быть организована в строгой иерархической системе с тщательной увязкой и с учетом материальных потоков в ней.

 

1.    Историческая справка:

Во всех развитых странах направление малой ЯЭ начало развиваться с начала 50-х годов прошлого века (в каких-то странах чуть позже) и, в основном было подчинено решению задач министерств обороны. В США, для решения этих задач в 1952 г. была разработана специальная армейская программа по ЯЭ. Эта программа предусматривала разработку и строительство стационарных, блочно-транспортабельных, передвижных наземных и плавучих АСММ с корпусными реакторами водо-водяного и кипящего типа, а также с реакторами, теплоносителями которых являлись газ и жидкий металл, для обеспечения электрической и тепловой энергией гарнизонов, размещенных на удаленных военных базах. В соответствии с этой программой было построено 8 экспериментальных АСММ электрической мощностью от 0,3 до 3 МВт, в том числе:

  • на Аляске (SM1A)
  • в Гренландии (PM2A)
  • в Антарктиде (PM3A).

Все указанные станции были выведены из эксплуатации в 60-е годы прошлого века. Плавучая АСММ Sturgis (MH1A), эксплуатировавшаяся в зоне Панамского канала на озере Гатун проработала с августа 1968 по июль 1976 года.

В СССР поисковые расчетно-конструкторские исследования АСММ также производились в то же самое время. Целью этих исследований являлось выявление наиболее перспективных проектов АСММ для практической реализации в виде опытных, демонстрационных и промышленных образцов. Всего было проработано около 20 вариантов АСММ электрической мощностью 1–1,5 МВт с различными реакторами (на тепловых, промежуточных и быстрых нейтронах) и разными видами исполнения (стационарные, блочно-транспортируемые, передвижные и плавучие АСММ).

В октябре 1956 г было принято правительственное решение о создании АСММ. После этого были сделаны несколько технических проектов, часть из которых была реализована:

  • В 1961 г. была введена в эксплуатацию передвижная атомная станция ТЭС3, которая проработала до 18 июля 1966 г. Эта станция электрической мощностью 1,5 МВт с ВВРом спроектирована и изготовлена в период 1957–1960 гг.
  • Затем в период 1961–1963 гг. была спроектирована и изготовлена блочно-транспортабельная станция «АРБУС». Эта станция электрической мощностью 0,75 МВт с органическим теплоносителем была выведена на проектные параметры в г.Димитровграде.
  • С 1981 г. и по настоящее время в РНЦ «Курчатовский институт» (КИ) работает опытная ядерно-энергетическая установка «Гамма» с ВВР тепловой мощностью 220 кВт и термоэлектрическими генераторами суммарной мощностью 6,6 кВт. На основе опыта эксплуатации этой установки разработан технический проект АСММ «Елена».
  • В период 1976–1985 гг. в Белоруссии были созданы две опытных мобильных установки «Памир-630Д». Особенностью этих одноконтурных установок электрической мощностью 300–600 кВт является использование в качестве теплоносителя диссоциирующего вещества «нитрин», полученного на основе четырехокиси азота (N2O4).
  • В 1974–1976 гг. были введены в эксплуатацию 4 энергоблока с канальными водографитовыми реакторами ЭГП-6 на Билибинской АЭС. При общей установленной электрической мощности энергоблоков 48 МВт отпуск тепла составляет 78 МВт и может быть максимально увеличен до 116 МВт при снижении электрической мощности до 40 МВт.

К прототипам будущих АСММ смело можно отнести и АЭУ четырех поколений, используемые на ледокольном и подводном флоте. Эти установки накопили огромный опыт эксплуатации (более 6,000 реакторо-лет) и на их основе, в России создано большинство проектов современных АСММ, предлагаемых к реализации в ближайшее время.

 

2. Потенциальные сферы использования АСММ:

2.1 Небольшие населенные пункты, без централизованного электроснабжения

Естественно, что и сегодня есть обширные территории Земного шара, с малой плотностью заселения. Сотни населенных пунктов  не подключены к централизованной электросети из-за удаленного расположения. Однако, население маленьких поселков, также нуждается в электрической и тепловой энергии. С похожей ситуацией сталкиваются жители небольших островных государств. Мощность большинства электростанций на Гавайях не превышает 20 МВт. Одним из наиболее ярких примеров может служить Индонезия – 13,300 островов. Потенциальный рынок не подключенных к общей электросети населенных пунктов очень обширен. В одной только Индии их насчитывается около 80,000. Подсчитано, что в среднем для населенного пункта в 1,000 человек требуется станция от 2 до 5 МВт, для 50,000-ого города соответственно 35-40 МВт мощности [3].

Жизневский Рис.1

 

 

 

Рисунок 1: График зависимости мощности станции от численности населения [3]:

 

 

 

 

Районы Русского Крайнего Севера и приравненных к ним удаленных территорий, а также места проживания малочисленных народов Севера расположены на территории 31 субъекта Российской Федерации, в том числе:

  • 15 краев и областей
  • 6 республик
  • 10 автономных округов.

На этих территориях проживает свыше 10 млн. человек, в т.ч. более 2,5 млн.человек составляют сельские жители. В этой зоне расположено 535 города и поселка городского типа, из которых:

  • 353 – численностью до 10 тыс.чел.
  • 91 – от 10 до 20 тыс.чел.
  • 55 – от 20 до 50 тыс.чел.
  • 17 – от 50 до 100 тыс.чел.
  • 8 – от 100 до 200 тыс.чел.
  • 11 – более 200 тыс.чел.

6,493 сельских н/пункта, в том числе:

  • с числом жителей до 10 чел. – 1606 н/пунктов,
  • от 11 до 50 чел. – 1669
  • от 52 до 100 чел. – 617
  • от 101 до 500 чел. – 1476
  • от 501 до 1000 чел. – 657
  • от 1001 до 3000 чел. – 405
  • от 3001 до 5000 чел. – 30
  • более 5000 чел. – 27 пунктов [4].

На рисунке 2, кроме России показаны регионы остальной части Земли, в которых невозможно устойчивое развитие без атомных энергоисточников малой и средней мощности.

 

Жизневский Рис.2

 

 

 

 

Рисунок 2: Регионы, нуждающиеся в энергетике малой и средней мощности [4]:

 

 

 

 

Понятно, что региональный аспект развития АСММ в смысле их энергетической ниши охватывает огромные территории Российского Ближнего и Крайнего Севера. Это районы, которые не могут быть охвачены объединенными или узловыми энергосистемами, в которых действует большое число мелких изолированных потребителей с нагрузками до 3-5 МВт (более 6,000 ДЭС общей установленной мощностью свыше 3 ГВт, вырабатывающих около 6 млрд. кВт.ч электроэнергии при удельных расходах топлива 500-600 г у.т./кВт.ч). (суммарный завоз топлива 3-3.5 млн. т у.т. в год) [7].

В этих регионах, для целей теплоснабжения здесь эксплуатируется более 5 тыс. котельных мощностью менее 10 Гкал/ч (в среднем около 1,5 Гкал/ч), не удовлетворяющих требованиям надежности и качества. И несмотря на высокие тарифы на электроэнергию в этих регионах зачастую нет альтернативы электроотоплению. Для целей теплоснабжения эксплуатируется более 5 тыс. котельных мощностью менее 10 Гкал/ч (в среднем около 1,5 Гкал/ч), не удовлетворяющих требованиям надежности и качества. И несмотря на высокие тарифы на электроэнергию в этих регионах зачастую нет альтернативы электроотоплению [7].

2.2 Энергоснабжение промышленности

Добыча полезных ископаемых – одна из наиболее важных отраслей, а в большинстве развивающихся стран пожалуй самая важная. Для добычи, последующей переработки и транспортировки полезных ископаемых требуется электроэнергия. Например, для передачи газа по газопроводу при невысоких давлениях требуется затратить 20% этого газа. Специалисты Газпрома уже обдумывали варианты использования АСММ. Во многих случаях разработка месторождения занимает в среднем 15 лет. Все это время, если предприятие находится вдали от развитой электросети, на получение энергии приходится тратить углеводородные ресурсы. В случае с  транспортабельной АСММ, можно этого избежать, ведь она может работать на одной загрузке до 20 лет.

2.3 Опреснение морской воды

Согласно данным ЮНЕСКО к 2050 году 7 миллиардов человек в 60 странах (по пессимистическим прогнозам) или 2 миллиарда человек в 48 странах (по оптимисти­ческим прогнозам) [5] столкнутся с проблемой нехватки воды. Пресная вода стре­мительно превращается в дефицитный природный ресурс. За XX столетие ее по­требление увеличилось в 7 раз, тогда как население планеты выросло всего втрое. Не случайно ООН объявила 2003 год Международным годом пресной воды. По данным ООН дефицит пресной воды в мире (включая сельскохозяйствен­ные и промышленные нужды) оценивается в 230 млрд. мЗ в год. К 2025 году дефицит пресной воды увеличится до 1,3-2,0 трлн. мЗ в год. В настоящее время основные по­требители опресненной воды сконцентрированы на Ближнем востоке (70% от общего объема), в Европе – 9,9%. США – 7,4% (в основном Калифорния и Флорида), в Африке – 6,3% и остальные 5,8% – страны Азии [5].

Хотя Россия обладает громадными запасами пресной воды и их распределение по территории является достаточно равномерным, тем не менее ситуация с водоснабжением, в некоторых регионах России, не является исключением из общей тенденции. Опреснение морской воды является одним из основных вариантов решения проблемы дефицита пресной воды.

В связи с этим, к настоящему времени в мире получили широкое распространение опреснительные установки различных типов, и практически все они (за исключением систем работающих на принципе обратного осмоса, например в Израиле) для своей работы требуют тепловую, механическую или электрическую энергию. Все эти виды энергии сегодня получают сжиганием органического топлива.

Жизневский Рис.3

 

 

 

 

Рисунок 3: Перспективные рынки опресненной морской воды [5]:

 

 

 

 

Исключением является лишь ядерно-опреснительный комплекс в г. Актау (бывш. г. Шевченко), Казахстан, где с 1973 года эксплуатировался ядерный реактор на быстрых нейтронах БН-350 и дистилляционный опреснительный комплекс мощностью 120,000 м3/сутки. РУ БН-350 выведена из эксплуатации в 1998 г и будет утилизирована, а опреснительный комплекс работает и в настоящее время, используя тепло ТЭЦ на органическом топливе.

Более чем 20-летняя эксплуатация атомного энергоопреснительного комплекса в г. Актау наглядно подтверждает надежность, безопасность и экологическую чистоту таких комплексов, отсутствие сколько-нибудь значительного отрицательного воздействия на окружающую среду.

Использование ЯЭ для опреснительных установок наиболее перспективно и имеет ряд экологических и экономических преимуществ, а идея поставки на место размещения испытанного и сданного “под ключ” в промышленно развитой зоне источника опресненной воды и электроэнергии – плавучего атомного энергоопреснительного комплекса, при минимальном объеме строительно-монтажных работ на площадке, – весьма привлекательна.

Сегодня рынок опреснения морской воды развивается стремительно. В 1995 году его объем составлял ~ 3 млрд. долларов США в год, а к 2015 году, по прогнозам МАГАТЭ достигнет 12 млрд. долларов США в год. Приблизительно 23 миллиона м3/сутки опресненной воды в настоящее время производятся 12500 станциями, сооруженными в различных частях мира [6]. Для энергоснабжения этих станций в значительной степени используют источники энергии на органическом топливе. Физически понятно, что опреснение воды является энергоемким процессом, поэтому выбор эффективного энергоисточника является одним из наиболее принципиальных вопросов экономики опреснения. В этом контексте, использование ядерных РУ в качестве энергоисточников в составе опреснительных систем может оказаться весьма перспективным.

Детальное изучение возможности и первые практические шаги в использовании ЯЭ для опреснения морской воды (ядерное опреснение) началось сравнительно недавно. Это было мотивировано рядом причин: экономической конкурентоспособностью ЯЭ в сфере производства электроэнергии, стремлением развивать в новой области энергопотребления борьбу за сохранение ограниченных ресурсов органического топлива, общемировой задачей защиты окружающей среды от выбросов парниковых газов и другими причинами. К настоящему времени, на международном уровне интерес к ядерным источникам энергии в сфере опреснения еще более возрос, и начинают намечаться перспективы перехода проблемы в практическую и коммерческую плоскость.

В связи с этим возникла необходимость изучения технической возможности и экономической целесообразности продвижения российских реакторных технологий на формирующийся международный рынок ядерного опреснения. Использование комбинированного цикла производства пресной воды и электроэнергии обеспечивает повышение капиталоотдачи и уменьшение себестоимости выработки единицы продукции. Коэффициент полезного использования ядерного топлива может достигать (55-60)% по сравнению с (30-32)%, получаемых на АЭС, вырабатывающих только электроэнергию.

Наиболее востребованный диапазон производительностей опреснительных установок – от 50,000 до 200,000 м3/сутки, приемлемая цена опресненной воды, вырабатываемой ЯЭОК – от 0,45 до 0,8 $/м3 [6]. Производительность ЯЭОК по опресненной воде более 200,000 м3/сутки вызывает проблемы распределения ее по потребителям [16].

Для энергообеспечения ЯЭОК могут применяться различные типы РУ: на тепловых или быстрых нейтронах; с различным теплоносителем/замедлителем: водо-водяные, жидкометаллические, графитовые и др. По варианту базирования установки могут быть наземными или плавучими, стационарными или передвижными. Предпочтительный вариант должен выбираться, исходя из конкретных условий расположения площадки. Однако при прочих равных условиях ЯЭОК на базе плавучих энергетических блоков (ПЭБ) по сравнению с наземным вариантом строительства комплексов такой же мощности имеют следующие основные достоинства:

  • сокращение сроков строительства и снижение капитальных затрат за счет минимальных объемов строительно-монтажных работ
  • высокое качество изготовления плавучего энергоблока в условиях судостроительного завода и сдача его под “ключ”
  • возможность размещения комплекса в любой прибрежной точке в непосредственной близости от потребителя пресной воды и электроэнергии
  • простота снятия с эксплуатации – после списания плавучий энергоблок буксируется на специализированное предприятие для утилизации
  • сокращение срока окупаемости капиталовложений.

 

Таблица 1: Перспективы мирового рынка по обессоливанию воды [6]:

Производительность в 1995 году (м3/сутки):

Прирост установленной производительности по годам (м3/сутки):

Ожидаемая производи-тельность к 2015 г  (м3/сутки):

1996-

2000

2001-

2005

2006-

2010

2011-

2015

США

183,400

322,971

302,783

483,931

773,135

2,066,220

Мексика

32,864

135,506

104,568

169,510

274,786

717,234

Антильские острова

73,481

28,198

27,991

35,696

45,523

210,889

Кипр

8,681

44,850

32,531

52,301

84,085

222,448

Италия

126,370

84,073

149,919

256,721

439,609

1,056,692

Мальта

122,117

66,716

102,265

157,648

243,025

691,771

Испания

249,315

306,769

197,321

267,338

362,201

1,382,944

Бывший СССР

136,942

64,356

60,416

78,551

102,128

442,393

Египет

30,069

27,263

40,041

68,005

115,500

280,878

Ливия

393,842

195,511

152,999

192,718

242,748

1,177,818

Бахрейн

92,717

131,556

71,017

93,505

123,114

511,909

Индия

13,415

69,817

34,803

49,355

69,992

237,382

Иран

319,397

268,716

424,297

730,408

1,257,365

3,000,183

Израиль

45,468

145,124

37,432

44,784

53,579

326,387

Кувейт

1,195,895

245,999

214,820

246,825

283,598

2,187,137

Оман

145,343

141,757

96,577

129,065

172,481

685,223

Катар

513,214

133,818

172,607

218,652

276,982

1,315,273

Саудовская Аравия

3,733,747

1,069,526

1,680,028

2,270,110

3,065,990

11,819,401

ОАЭ

1,851,166

572,314

724,402

940,932

1,222,186

5,311,000

Япония

17,898

49,489

35,671

54,553

83,430

241,041

ВСЕГО:

9,285,341

4,104,329

4,662,488

6,540,608

9,291,457

33,884,223

Выше было показано, что рынок опреснения воды экономически привлекателен и неуклонно растет. Как говорилось выше, 70% от всей обессоленной воды приходится на страны Ближнего Востока. На этом фоне нужно отметить, что, в  декабре 2006 года шесть стран-членов Совета Стран Персидского залива – Кувейт, Саудовская Аравия, Оман, Бахрейн, Объединенные Арабские Эмираты и Катар – объявили о том, что Совет начинает изучение вопроса использования ядерной энергии в мирных целях. В свою очередь, Франция заявила о своих намерениях сотрудничать с этими государствами в сфере ядерных технологий.

В феврале 2007 года шесть государств согласились сотрудничать с МАГАТЭ для анализа технического осуществления проекта по использованию ЯЭ, а также программы по опреснению воды. Саудовская Аравия возглавляет это исследование и ее власти полагают, что программа может появиться в ближайшем будущем.

Наиболее характерные требования к энергоисточнику для ЯЭОК следующие:

  • мощность реактора от 40 до 200 МВт (э)
  • стоимость АЭС от 1000 до 1700 $/кВт (э) установленной мощности
  • время создания реакторной установки от 40 до 60 месяцев
  • срок службы реакторной установки от 40 до 60 лет [16].

При одноцелевом использовании ЯЭОК для производства 200,000 м3/сутки пресной воды достаточно мощности РУ около 40 МВт.

Исходя из того, что дефицит пресной воды в настоящее время – 230 млрд. мЗ в год [5],  т.е., приблизительно, 630 млн. мЗ вдень, то можно посчитать, что для устранения нехватки пресной воды путем опреснения нужно еще примерно 126 ГВт мощностей. Безусловно, этой цифры достичь почти невозможно. Если считать, что планируемый прирост  производства пресной воды к  2015 году будет равен примерно 10 млн. мЗ в сутки, то для его покрытия требуется 2 ГВт новых мощностей, а это примерно 50 новых АСММ. Это вполне осуществимая задача.

 

(Продолжение следует)